Loading…
Event-Triggered Exponential Synchronization for Complex-Valued Memristive Neural Networks With Time-Varying Delays
This article solves the event-triggered exponential synchronization problem for a class of complex-valued memristive neural networks with time-varying delays. The drive-response complex-valued memristive neural networks are translated into two real-valued memristive neural networks through the metho...
Saved in:
Published in: | IEEE transaction on neural networks and learning systems 2020-10, Vol.31 (10), p.4104-4116 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This article solves the event-triggered exponential synchronization problem for a class of complex-valued memristive neural networks with time-varying delays. The drive-response complex-valued memristive neural networks are translated into two real-valued memristive neural networks through the method of separating the complex-valued memristive neural networks into real and imaginary parts. In order to reduce the information exchange frequency between the sensor and the controller, a novel event-triggered mechanism with the event-triggering functions is introduced in wireless communication networks. Some sufficient conditions are established to achieve the event-triggered exponential synchronization for drive-response complex-valued memristive neural networks with time-varying delays. In addition, to guarantee that the Zeno behavior cannot occur, a positive lower bound for the interevent times is explicitly derived. Finally, numerical simulations are provided to illustrate the effectiveness and superiority of the obtained theoretical results. |
---|---|
ISSN: | 2162-237X 2162-2388 |
DOI: | 10.1109/TNNLS.2019.2952186 |