Loading…

Finding spectrum occupancy pattern using CBFPP mining technique

The main challenge of problem lies in the perception of Cognitive Radio technology is to discover licensed empty spectrum pattern. The efficient model is needed for allocation among licensed and unlicensed users in wireless spectrum to improve the extraction rate and collision rate. To discover the...

Full description

Saved in:
Bibliographic Details
Published in:Journal of intelligent & fuzzy systems 2020-01, Vol.39 (3), p.4361-4368
Main Authors: Karthik, G.M., Sayeekumar, M., Kumaravel, R., Aravind, T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The main challenge of problem lies in the perception of Cognitive Radio technology is to discover licensed empty spectrum pattern. The efficient model is needed for allocation among licensed and unlicensed users in wireless spectrum to improve the extraction rate and collision rate. To discover the spectrum hole in spectrum paging bands, stirred by FP mining technique proposed an efficient enumeration approach, namely Constraint Based Frequent Periodic Pattern Mining (CBFPP). The proposed algorithm uses TRIE-like data structure with data mining constraints. CBFPP algorithm predicts periodic spectrum occupancy holes in the paging bands. It is shown that CBFPP has a high prediction accuracy with reasonable time complexity. Experiment with synthetic and real data validate higher prediction accuracy and with reasonable time complexities. The unlicensed user utilizes the predicted spectrum pattern in spectrum usage of channel without significant interference to licensed users.
ISSN:1064-1246
1875-8967
DOI:10.3233/JIFS-200368