Loading…

Nonlinear system modeling using the takagi-sugeno fuzzy model and long-short term memory cells

 The data driven black-box or gray-box models like neural networks and fuzzy systems have some disadvantages, such as the high and uncertain dimensions and complex learning process. In this paper, we combine the Takagi-Sugeno fuzzy model with long-short term memory cells to overcome these disadvanta...

Full description

Saved in:
Bibliographic Details
Published in:Journal of intelligent & fuzzy systems 2020-01, Vol.39 (3), p.4547-4556
Main Authors: Yu, Wen, Vega, Francisco
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c261t-250c9e521bdabc97bac543b7f2ff2a053d0ae2a3b2841d8e733cc4975889623e3
cites cdi_FETCH-LOGICAL-c261t-250c9e521bdabc97bac543b7f2ff2a053d0ae2a3b2841d8e733cc4975889623e3
container_end_page 4556
container_issue 3
container_start_page 4547
container_title Journal of intelligent & fuzzy systems
container_volume 39
creator Yu, Wen
Vega, Francisco
description  The data driven black-box or gray-box models like neural networks and fuzzy systems have some disadvantages, such as the high and uncertain dimensions and complex learning process. In this paper, we combine the Takagi-Sugeno fuzzy model with long-short term memory cells to overcome these disadvantages. This novel model takes the advantages of the interpretability of the fuzzy system and the good approximation ability of the long-short term memory cell. We propose a fast and stable learning algorithm for this model. Comparisons with others similar black-box and grey-box models are made, in order to observe the advantages of the proposal.
doi_str_mv 10.3233/JIFS-200491
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2449456383</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2449456383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-250c9e521bdabc97bac543b7f2ff2a053d0ae2a3b2841d8e733cc4975889623e3</originalsourceid><addsrcrecordid>eNotkE1PwzAMhiMEEmNw4g9E4ogC-WzaI5rYGJrgAFyp0tTtNtpmJOmh-_V0Khfbsh69lh-Ebhl9EFyIx9f18oNwSmXGztCMpVqRNEv0-TjTRBLGZXKJrkLYU8q04nSGvt9c1-w6MB6HIURocetKGDc17sOpxi3gaH5MvSOhr6FzuOqPx2HCsOlK3LiuJmHrfMQR_BgArfMDttA04RpdVKYJcPPf5-hr-fy5eCGb99V68bQhlicsEq6ozUBxVpSmsJkujFVSFLriVcUNVaKkBrgRBU8lK1PQQlgrM63S8T0uQMzR3ZR78O63hxDzvet9N57MuZSZVIlIxUjdT5T1LgQPVX7wu9b4IWc0PwnMTwLzSaD4A3A3ZBI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449456383</pqid></control><display><type>article</type><title>Nonlinear system modeling using the takagi-sugeno fuzzy model and long-short term memory cells</title><source>Business Source Ultimate</source><creator>Yu, Wen ; Vega, Francisco</creator><creatorcontrib>Yu, Wen ; Vega, Francisco</creatorcontrib><description> The data driven black-box or gray-box models like neural networks and fuzzy systems have some disadvantages, such as the high and uncertain dimensions and complex learning process. In this paper, we combine the Takagi-Sugeno fuzzy model with long-short term memory cells to overcome these disadvantages. This novel model takes the advantages of the interpretability of the fuzzy system and the good approximation ability of the long-short term memory cell. We propose a fast and stable learning algorithm for this model. Comparisons with others similar black-box and grey-box models are made, in order to observe the advantages of the proposal.</description><identifier>ISSN: 1064-1246</identifier><identifier>EISSN: 1875-8967</identifier><identifier>DOI: 10.3233/JIFS-200491</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Algorithms ; Artificial neural networks ; Fuzzy logic ; Fuzzy systems ; Machine learning ; Mathematical models ; Neural networks ; Nonlinear systems ; Short term</subject><ispartof>Journal of intelligent &amp; fuzzy systems, 2020-01, Vol.39 (3), p.4547-4556</ispartof><rights>Copyright IOS Press BV 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-250c9e521bdabc97bac543b7f2ff2a053d0ae2a3b2841d8e733cc4975889623e3</citedby><cites>FETCH-LOGICAL-c261t-250c9e521bdabc97bac543b7f2ff2a053d0ae2a3b2841d8e733cc4975889623e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Yu, Wen</creatorcontrib><creatorcontrib>Vega, Francisco</creatorcontrib><title>Nonlinear system modeling using the takagi-sugeno fuzzy model and long-short term memory cells</title><title>Journal of intelligent &amp; fuzzy systems</title><description> The data driven black-box or gray-box models like neural networks and fuzzy systems have some disadvantages, such as the high and uncertain dimensions and complex learning process. In this paper, we combine the Takagi-Sugeno fuzzy model with long-short term memory cells to overcome these disadvantages. This novel model takes the advantages of the interpretability of the fuzzy system and the good approximation ability of the long-short term memory cell. We propose a fast and stable learning algorithm for this model. Comparisons with others similar black-box and grey-box models are made, in order to observe the advantages of the proposal.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Fuzzy logic</subject><subject>Fuzzy systems</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Nonlinear systems</subject><subject>Short term</subject><issn>1064-1246</issn><issn>1875-8967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotkE1PwzAMhiMEEmNw4g9E4ogC-WzaI5rYGJrgAFyp0tTtNtpmJOmh-_V0Khfbsh69lh-Ebhl9EFyIx9f18oNwSmXGztCMpVqRNEv0-TjTRBLGZXKJrkLYU8q04nSGvt9c1-w6MB6HIURocetKGDc17sOpxi3gaH5MvSOhr6FzuOqPx2HCsOlK3LiuJmHrfMQR_BgArfMDttA04RpdVKYJcPPf5-hr-fy5eCGb99V68bQhlicsEq6ozUBxVpSmsJkujFVSFLriVcUNVaKkBrgRBU8lK1PQQlgrM63S8T0uQMzR3ZR78O63hxDzvet9N57MuZSZVIlIxUjdT5T1LgQPVX7wu9b4IWc0PwnMTwLzSaD4A3A3ZBI</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Yu, Wen</creator><creator>Vega, Francisco</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200101</creationdate><title>Nonlinear system modeling using the takagi-sugeno fuzzy model and long-short term memory cells</title><author>Yu, Wen ; Vega, Francisco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-250c9e521bdabc97bac543b7f2ff2a053d0ae2a3b2841d8e733cc4975889623e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Fuzzy logic</topic><topic>Fuzzy systems</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Nonlinear systems</topic><topic>Short term</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Wen</creatorcontrib><creatorcontrib>Vega, Francisco</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Wen</au><au>Vega, Francisco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear system modeling using the takagi-sugeno fuzzy model and long-short term memory cells</atitle><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>39</volume><issue>3</issue><spage>4547</spage><epage>4556</epage><pages>4547-4556</pages><issn>1064-1246</issn><eissn>1875-8967</eissn><abstract> The data driven black-box or gray-box models like neural networks and fuzzy systems have some disadvantages, such as the high and uncertain dimensions and complex learning process. In this paper, we combine the Takagi-Sugeno fuzzy model with long-short term memory cells to overcome these disadvantages. This novel model takes the advantages of the interpretability of the fuzzy system and the good approximation ability of the long-short term memory cell. We propose a fast and stable learning algorithm for this model. Comparisons with others similar black-box and grey-box models are made, in order to observe the advantages of the proposal.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/JIFS-200491</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-1246
ispartof Journal of intelligent & fuzzy systems, 2020-01, Vol.39 (3), p.4547-4556
issn 1064-1246
1875-8967
language eng
recordid cdi_proquest_journals_2449456383
source Business Source Ultimate
subjects Algorithms
Artificial neural networks
Fuzzy logic
Fuzzy systems
Machine learning
Mathematical models
Neural networks
Nonlinear systems
Short term
title Nonlinear system modeling using the takagi-sugeno fuzzy model and long-short term memory cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A24%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20system%20modeling%20using%20the%20takagi-sugeno%20fuzzy%20model%20and%20long-short%20term%20memory%20cells&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=Yu,%20Wen&rft.date=2020-01-01&rft.volume=39&rft.issue=3&rft.spage=4547&rft.epage=4556&rft.pages=4547-4556&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233/JIFS-200491&rft_dat=%3Cproquest_cross%3E2449456383%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c261t-250c9e521bdabc97bac543b7f2ff2a053d0ae2a3b2841d8e733cc4975889623e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2449456383&rft_id=info:pmid/&rfr_iscdi=true