Loading…
Nonlinear system modeling using the takagi-sugeno fuzzy model and long-short term memory cells
The data driven black-box or gray-box models like neural networks and fuzzy systems have some disadvantages, such as the high and uncertain dimensions and complex learning process. In this paper, we combine the Takagi-Sugeno fuzzy model with long-short term memory cells to overcome these disadvanta...
Saved in:
Published in: | Journal of intelligent & fuzzy systems 2020-01, Vol.39 (3), p.4547-4556 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c261t-250c9e521bdabc97bac543b7f2ff2a053d0ae2a3b2841d8e733cc4975889623e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c261t-250c9e521bdabc97bac543b7f2ff2a053d0ae2a3b2841d8e733cc4975889623e3 |
container_end_page | 4556 |
container_issue | 3 |
container_start_page | 4547 |
container_title | Journal of intelligent & fuzzy systems |
container_volume | 39 |
creator | Yu, Wen Vega, Francisco |
description | The data driven black-box or gray-box models like neural networks and fuzzy systems have some disadvantages, such as the high and uncertain dimensions and complex learning process. In this paper, we combine the Takagi-Sugeno fuzzy model with long-short term memory cells to overcome these disadvantages. This novel model takes the advantages of the interpretability of the fuzzy system and the good approximation ability of the long-short term memory cell. We propose a fast and stable learning algorithm for this model. Comparisons with others similar black-box and grey-box models are made, in order to observe the advantages of the proposal. |
doi_str_mv | 10.3233/JIFS-200491 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2449456383</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2449456383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-250c9e521bdabc97bac543b7f2ff2a053d0ae2a3b2841d8e733cc4975889623e3</originalsourceid><addsrcrecordid>eNotkE1PwzAMhiMEEmNw4g9E4ogC-WzaI5rYGJrgAFyp0tTtNtpmJOmh-_V0Khfbsh69lh-Ebhl9EFyIx9f18oNwSmXGztCMpVqRNEv0-TjTRBLGZXKJrkLYU8q04nSGvt9c1-w6MB6HIURocetKGDc17sOpxi3gaH5MvSOhr6FzuOqPx2HCsOlK3LiuJmHrfMQR_BgArfMDttA04RpdVKYJcPPf5-hr-fy5eCGb99V68bQhlicsEq6ozUBxVpSmsJkujFVSFLriVcUNVaKkBrgRBU8lK1PQQlgrM63S8T0uQMzR3ZR78O63hxDzvet9N57MuZSZVIlIxUjdT5T1LgQPVX7wu9b4IWc0PwnMTwLzSaD4A3A3ZBI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449456383</pqid></control><display><type>article</type><title>Nonlinear system modeling using the takagi-sugeno fuzzy model and long-short term memory cells</title><source>Business Source Ultimate</source><creator>Yu, Wen ; Vega, Francisco</creator><creatorcontrib>Yu, Wen ; Vega, Francisco</creatorcontrib><description> The data driven black-box or gray-box models like neural networks and fuzzy systems have some disadvantages, such as the high and uncertain dimensions and complex learning process. In this paper, we combine the Takagi-Sugeno fuzzy model with long-short term memory cells to overcome these disadvantages. This novel model takes the advantages of the interpretability of the fuzzy system and the good approximation ability of the long-short term memory cell. We propose a fast and stable learning algorithm for this model. Comparisons with others similar black-box and grey-box models are made, in order to observe the advantages of the proposal.</description><identifier>ISSN: 1064-1246</identifier><identifier>EISSN: 1875-8967</identifier><identifier>DOI: 10.3233/JIFS-200491</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Algorithms ; Artificial neural networks ; Fuzzy logic ; Fuzzy systems ; Machine learning ; Mathematical models ; Neural networks ; Nonlinear systems ; Short term</subject><ispartof>Journal of intelligent & fuzzy systems, 2020-01, Vol.39 (3), p.4547-4556</ispartof><rights>Copyright IOS Press BV 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-250c9e521bdabc97bac543b7f2ff2a053d0ae2a3b2841d8e733cc4975889623e3</citedby><cites>FETCH-LOGICAL-c261t-250c9e521bdabc97bac543b7f2ff2a053d0ae2a3b2841d8e733cc4975889623e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Yu, Wen</creatorcontrib><creatorcontrib>Vega, Francisco</creatorcontrib><title>Nonlinear system modeling using the takagi-sugeno fuzzy model and long-short term memory cells</title><title>Journal of intelligent & fuzzy systems</title><description> The data driven black-box or gray-box models like neural networks and fuzzy systems have some disadvantages, such as the high and uncertain dimensions and complex learning process. In this paper, we combine the Takagi-Sugeno fuzzy model with long-short term memory cells to overcome these disadvantages. This novel model takes the advantages of the interpretability of the fuzzy system and the good approximation ability of the long-short term memory cell. We propose a fast and stable learning algorithm for this model. Comparisons with others similar black-box and grey-box models are made, in order to observe the advantages of the proposal.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Fuzzy logic</subject><subject>Fuzzy systems</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Nonlinear systems</subject><subject>Short term</subject><issn>1064-1246</issn><issn>1875-8967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotkE1PwzAMhiMEEmNw4g9E4ogC-WzaI5rYGJrgAFyp0tTtNtpmJOmh-_V0Khfbsh69lh-Ebhl9EFyIx9f18oNwSmXGztCMpVqRNEv0-TjTRBLGZXKJrkLYU8q04nSGvt9c1-w6MB6HIURocetKGDc17sOpxi3gaH5MvSOhr6FzuOqPx2HCsOlK3LiuJmHrfMQR_BgArfMDttA04RpdVKYJcPPf5-hr-fy5eCGb99V68bQhlicsEq6ozUBxVpSmsJkujFVSFLriVcUNVaKkBrgRBU8lK1PQQlgrM63S8T0uQMzR3ZR78O63hxDzvet9N57MuZSZVIlIxUjdT5T1LgQPVX7wu9b4IWc0PwnMTwLzSaD4A3A3ZBI</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Yu, Wen</creator><creator>Vega, Francisco</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200101</creationdate><title>Nonlinear system modeling using the takagi-sugeno fuzzy model and long-short term memory cells</title><author>Yu, Wen ; Vega, Francisco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-250c9e521bdabc97bac543b7f2ff2a053d0ae2a3b2841d8e733cc4975889623e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Fuzzy logic</topic><topic>Fuzzy systems</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Nonlinear systems</topic><topic>Short term</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Wen</creatorcontrib><creatorcontrib>Vega, Francisco</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent & fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Wen</au><au>Vega, Francisco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear system modeling using the takagi-sugeno fuzzy model and long-short term memory cells</atitle><jtitle>Journal of intelligent & fuzzy systems</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>39</volume><issue>3</issue><spage>4547</spage><epage>4556</epage><pages>4547-4556</pages><issn>1064-1246</issn><eissn>1875-8967</eissn><abstract> The data driven black-box or gray-box models like neural networks and fuzzy systems have some disadvantages, such as the high and uncertain dimensions and complex learning process. In this paper, we combine the Takagi-Sugeno fuzzy model with long-short term memory cells to overcome these disadvantages. This novel model takes the advantages of the interpretability of the fuzzy system and the good approximation ability of the long-short term memory cell. We propose a fast and stable learning algorithm for this model. Comparisons with others similar black-box and grey-box models are made, in order to observe the advantages of the proposal.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/JIFS-200491</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-1246 |
ispartof | Journal of intelligent & fuzzy systems, 2020-01, Vol.39 (3), p.4547-4556 |
issn | 1064-1246 1875-8967 |
language | eng |
recordid | cdi_proquest_journals_2449456383 |
source | Business Source Ultimate |
subjects | Algorithms Artificial neural networks Fuzzy logic Fuzzy systems Machine learning Mathematical models Neural networks Nonlinear systems Short term |
title | Nonlinear system modeling using the takagi-sugeno fuzzy model and long-short term memory cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A24%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20system%20modeling%20using%20the%20takagi-sugeno%20fuzzy%20model%20and%20long-short%20term%20memory%20cells&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=Yu,%20Wen&rft.date=2020-01-01&rft.volume=39&rft.issue=3&rft.spage=4547&rft.epage=4556&rft.pages=4547-4556&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233/JIFS-200491&rft_dat=%3Cproquest_cross%3E2449456383%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c261t-250c9e521bdabc97bac543b7f2ff2a053d0ae2a3b2841d8e733cc4975889623e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2449456383&rft_id=info:pmid/&rfr_iscdi=true |