Loading…
Electronic properties of slid bilayer graphene: effective models in low energy range
A generic tight-binding model for 2 p z electrons in bilayer graphene (BLG) systems is used to derive the expression of effective Hamiltonians for low-energy states around the K-points of hexagonal Brillouin zone. The obtained effective Hamiltonians are validated for two kinds of AA-like and AB-like...
Saved in:
Published in: | The European physical journal. B, Condensed matter physics Condensed matter physics, 2020-10, Vol.93 (10), Article 190 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c392t-3d75e1c94e5b814c7cd05041d94800790e653790ecf2be598fa5689bf71c0d5a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c392t-3d75e1c94e5b814c7cd05041d94800790e653790ecf2be598fa5689bf71c0d5a3 |
container_end_page | |
container_issue | 10 |
container_start_page | |
container_title | The European physical journal. B, Condensed matter physics |
container_volume | 93 |
creator | Ho, Sy-Ta Le, Hoang Anh Nguyen, Van Duy Do, Van-Nam |
description | A generic tight-binding model for 2
p
z
electrons in bilayer graphene (BLG) systems is used to derive the expression of effective Hamiltonians for low-energy states around the K-points of hexagonal Brillouin zone. The obtained effective Hamiltonians are validated for two kinds of AA-like and AB-like slid bilayer graphene (SBG). It is shown that, for the former case, the electronic structure is characterized by a gauge vector field which couples to the sliding vector to deform the band structure of the AA-stacked configuration as a perturbation. For the latter case, since the A–B interlayer coupling is the most dominant, it allows separating the energy bands and lowering the 4 × 4 Hamiltonian into a 2 × 2 effective model. A gauge vector field also appears, but different from the AA-like SBGs, it plays the role similar to an in-plane magnetic field.
Graphical abstract |
doi_str_mv | 10.1140/epjb/e2020-10328-6 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2450229892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A647371355</galeid><sourcerecordid>A647371355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-3d75e1c94e5b814c7cd05041d94800790e653790ecf2be598fa5689bf71c0d5a3</originalsourceid><addsrcrecordid>eNp9kclKBDEQhhtRcH0BTwFPHlorWy_eRNxAEFzOIZ2utBl6Om3So87bm3FE8SI5VEi-r1Lkz7JDCieUCjjFcdacIgMGOQXOqrzYyHao4CIvgBebP3tWbWe7Mc4AgBZU7GRPlz2aKfjBGTIGP2KYHEbiLYm9a0njer3EQLqgxxcc8IygtUlwb0jmvsU-EjeQ3r-TdBm6JQl66HA_27K6j3jwXfey56vLp4ub_O7--vbi_C43vGZTzttSIjW1QNlUVJjStCBB0LYWFUBZAxaSr4qxrEFZV1bLoqobW1IDrdR8Lzta902Tvy4wTmrmF2FITyomJDBWVzVL1Mma6nSPyg3WT0GbtFqcO-MHtC6dnxei5CXlUibh-I-QmAk_pk4vYlS3jw9_WbZmTfAxBrRqDG6uw1JRUKto1Coa9RWN-opGFUniaykmOP1X-J37H-sTqM-R8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450229892</pqid></control><display><type>article</type><title>Electronic properties of slid bilayer graphene: effective models in low energy range</title><source>Springer Link</source><creator>Ho, Sy-Ta ; Le, Hoang Anh ; Nguyen, Van Duy ; Do, Van-Nam</creator><creatorcontrib>Ho, Sy-Ta ; Le, Hoang Anh ; Nguyen, Van Duy ; Do, Van-Nam</creatorcontrib><description>A generic tight-binding model for 2
p
z
electrons in bilayer graphene (BLG) systems is used to derive the expression of effective Hamiltonians for low-energy states around the K-points of hexagonal Brillouin zone. The obtained effective Hamiltonians are validated for two kinds of AA-like and AB-like slid bilayer graphene (SBG). It is shown that, for the former case, the electronic structure is characterized by a gauge vector field which couples to the sliding vector to deform the band structure of the AA-stacked configuration as a perturbation. For the latter case, since the A–B interlayer coupling is the most dominant, it allows separating the energy bands and lowering the 4 × 4 Hamiltonian into a 2 × 2 effective model. A gauge vector field also appears, but different from the AA-like SBGs, it plays the role similar to an in-plane magnetic field.
Graphical abstract</description><identifier>ISSN: 1434-6028</identifier><identifier>EISSN: 1434-6036</identifier><identifier>DOI: 10.1140/epjb/e2020-10328-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Bilayers ; Brillouin zones ; Complex Systems ; Condensed Matter Physics ; Electronic properties ; Electronic structure ; Energy bands ; Fields (mathematics) ; Fluid- and Aerodynamics ; Graphene ; Graphite ; Interlayers ; Magnetic fields ; Perturbation ; Physics ; Physics and Astronomy ; Regular Article ; Solid State Physics ; System effectiveness</subject><ispartof>The European physical journal. B, Condensed matter physics, 2020-10, Vol.93 (10), Article 190</ispartof><rights>EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-3d75e1c94e5b814c7cd05041d94800790e653790ecf2be598fa5689bf71c0d5a3</citedby><cites>FETCH-LOGICAL-c392t-3d75e1c94e5b814c7cd05041d94800790e653790ecf2be598fa5689bf71c0d5a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ho, Sy-Ta</creatorcontrib><creatorcontrib>Le, Hoang Anh</creatorcontrib><creatorcontrib>Nguyen, Van Duy</creatorcontrib><creatorcontrib>Do, Van-Nam</creatorcontrib><title>Electronic properties of slid bilayer graphene: effective models in low energy range</title><title>The European physical journal. B, Condensed matter physics</title><addtitle>Eur. Phys. J. B</addtitle><description>A generic tight-binding model for 2
p
z
electrons in bilayer graphene (BLG) systems is used to derive the expression of effective Hamiltonians for low-energy states around the K-points of hexagonal Brillouin zone. The obtained effective Hamiltonians are validated for two kinds of AA-like and AB-like slid bilayer graphene (SBG). It is shown that, for the former case, the electronic structure is characterized by a gauge vector field which couples to the sliding vector to deform the band structure of the AA-stacked configuration as a perturbation. For the latter case, since the A–B interlayer coupling is the most dominant, it allows separating the energy bands and lowering the 4 × 4 Hamiltonian into a 2 × 2 effective model. A gauge vector field also appears, but different from the AA-like SBGs, it plays the role similar to an in-plane magnetic field.
Graphical abstract</description><subject>Analysis</subject><subject>Bilayers</subject><subject>Brillouin zones</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Electronic properties</subject><subject>Electronic structure</subject><subject>Energy bands</subject><subject>Fields (mathematics)</subject><subject>Fluid- and Aerodynamics</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Interlayers</subject><subject>Magnetic fields</subject><subject>Perturbation</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular Article</subject><subject>Solid State Physics</subject><subject>System effectiveness</subject><issn>1434-6028</issn><issn>1434-6036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kclKBDEQhhtRcH0BTwFPHlorWy_eRNxAEFzOIZ2utBl6Om3So87bm3FE8SI5VEi-r1Lkz7JDCieUCjjFcdacIgMGOQXOqrzYyHao4CIvgBebP3tWbWe7Mc4AgBZU7GRPlz2aKfjBGTIGP2KYHEbiLYm9a0njer3EQLqgxxcc8IygtUlwb0jmvsU-EjeQ3r-TdBm6JQl66HA_27K6j3jwXfey56vLp4ub_O7--vbi_C43vGZTzttSIjW1QNlUVJjStCBB0LYWFUBZAxaSr4qxrEFZV1bLoqobW1IDrdR8Lzta902Tvy4wTmrmF2FITyomJDBWVzVL1Mma6nSPyg3WT0GbtFqcO-MHtC6dnxei5CXlUibh-I-QmAk_pk4vYlS3jw9_WbZmTfAxBrRqDG6uw1JRUKto1Coa9RWN-opGFUniaykmOP1X-J37H-sTqM-R8g</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Ho, Sy-Ta</creator><creator>Le, Hoang Anh</creator><creator>Nguyen, Van Duy</creator><creator>Do, Van-Nam</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20201001</creationdate><title>Electronic properties of slid bilayer graphene: effective models in low energy range</title><author>Ho, Sy-Ta ; Le, Hoang Anh ; Nguyen, Van Duy ; Do, Van-Nam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-3d75e1c94e5b814c7cd05041d94800790e653790ecf2be598fa5689bf71c0d5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Bilayers</topic><topic>Brillouin zones</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Electronic properties</topic><topic>Electronic structure</topic><topic>Energy bands</topic><topic>Fields (mathematics)</topic><topic>Fluid- and Aerodynamics</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Interlayers</topic><topic>Magnetic fields</topic><topic>Perturbation</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular Article</topic><topic>Solid State Physics</topic><topic>System effectiveness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ho, Sy-Ta</creatorcontrib><creatorcontrib>Le, Hoang Anh</creatorcontrib><creatorcontrib>Nguyen, Van Duy</creatorcontrib><creatorcontrib>Do, Van-Nam</creatorcontrib><collection>CrossRef</collection><collection>Science (Gale in Context)</collection><jtitle>The European physical journal. B, Condensed matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ho, Sy-Ta</au><au>Le, Hoang Anh</au><au>Nguyen, Van Duy</au><au>Do, Van-Nam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic properties of slid bilayer graphene: effective models in low energy range</atitle><jtitle>The European physical journal. B, Condensed matter physics</jtitle><stitle>Eur. Phys. J. B</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>93</volume><issue>10</issue><artnum>190</artnum><issn>1434-6028</issn><eissn>1434-6036</eissn><abstract>A generic tight-binding model for 2
p
z
electrons in bilayer graphene (BLG) systems is used to derive the expression of effective Hamiltonians for low-energy states around the K-points of hexagonal Brillouin zone. The obtained effective Hamiltonians are validated for two kinds of AA-like and AB-like slid bilayer graphene (SBG). It is shown that, for the former case, the electronic structure is characterized by a gauge vector field which couples to the sliding vector to deform the band structure of the AA-stacked configuration as a perturbation. For the latter case, since the A–B interlayer coupling is the most dominant, it allows separating the energy bands and lowering the 4 × 4 Hamiltonian into a 2 × 2 effective model. A gauge vector field also appears, but different from the AA-like SBGs, it plays the role similar to an in-plane magnetic field.
Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjb/e2020-10328-6</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1434-6028 |
ispartof | The European physical journal. B, Condensed matter physics, 2020-10, Vol.93 (10), Article 190 |
issn | 1434-6028 1434-6036 |
language | eng |
recordid | cdi_proquest_journals_2450229892 |
source | Springer Link |
subjects | Analysis Bilayers Brillouin zones Complex Systems Condensed Matter Physics Electronic properties Electronic structure Energy bands Fields (mathematics) Fluid- and Aerodynamics Graphene Graphite Interlayers Magnetic fields Perturbation Physics Physics and Astronomy Regular Article Solid State Physics System effectiveness |
title | Electronic properties of slid bilayer graphene: effective models in low energy range |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T14%3A26%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20properties%20of%20slid%20bilayer%20graphene:%20effective%20models%20in%20low%20energy%20range&rft.jtitle=The%20European%20physical%20journal.%20B,%20Condensed%20matter%20physics&rft.au=Ho,%20Sy-Ta&rft.date=2020-10-01&rft.volume=93&rft.issue=10&rft.artnum=190&rft.issn=1434-6028&rft.eissn=1434-6036&rft_id=info:doi/10.1140/epjb/e2020-10328-6&rft_dat=%3Cgale_proqu%3EA647371355%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-3d75e1c94e5b814c7cd05041d94800790e653790ecf2be598fa5689bf71c0d5a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2450229892&rft_id=info:pmid/&rft_galeid=A647371355&rfr_iscdi=true |