Loading…

QPSO-CD: quantum-behaved particle swarm optimization algorithm with Cauchy distribution

Motivated by the particle swarm optimization (PSO) and quantum computing theory, we have presented a quantum variant of PSO (QPSO) mutated with Cauchy operator and natural selection mechanism (QPSO-CD) from evolutionary computations. The performance of proposed hybrid quantum-behaved particle swarm...

Full description

Saved in:
Bibliographic Details
Published in:Quantum information processing 2020-10, Vol.19 (10), Article 345
Main Authors: Bhatia, Amandeep Singh, Saggi, Mandeep Kaur, Zheng, Shenggen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-bb7e85dee27bb4f87e81e885f1426b6f827b31a0f18e781554ededd3c36765bb3
cites cdi_FETCH-LOGICAL-c319t-bb7e85dee27bb4f87e81e885f1426b6f827b31a0f18e781554ededd3c36765bb3
container_end_page
container_issue 10
container_start_page
container_title Quantum information processing
container_volume 19
creator Bhatia, Amandeep Singh
Saggi, Mandeep Kaur
Zheng, Shenggen
description Motivated by the particle swarm optimization (PSO) and quantum computing theory, we have presented a quantum variant of PSO (QPSO) mutated with Cauchy operator and natural selection mechanism (QPSO-CD) from evolutionary computations. The performance of proposed hybrid quantum-behaved particle swarm optimization with Cauchy distribution (QPSO-CD) is investigated and compared with its counterparts based on a set of benchmark problems. Moreover, QPSO-CD is employed in well-studied constrained engineering problems to investigate its applicability. Further, the correctness and time complexity of QPSO-CD are analyzed and compared with the classical PSO. It has been proved that QPSO-CD handles such real-life problems efficiently and can attain superior solutions in most of the problems. The experimental results shown that QPSO associated with Cauchy distribution and natural selection strategy outperforms other variants in context of stability and convergence.
doi_str_mv 10.1007/s11128-020-02842-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2450234647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450234647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-bb7e85dee27bb4f87e81e885f1426b6f827b31a0f18e781554ededd3c36765bb3</originalsourceid><addsrcrecordid>eNp9UFtLwzAYLaLgnP4BnwI-R3Npmuib1CsMpqj4GJI23TLWy5LUUX-92Sr45sN3P-d8cJLkHKNLjBC_8hhjIiAiKIZICRwOkglmnEJMKTnc9_HEGTtOTrxfIURwJrJJ8vn68jaH-d0N2PSqCX0NtVmqL1OCTrlgi7UBfqtcDdou2Np-q2DbBqj1onU2LGuwjRnkqi-WAyitD87qfgc5TY4qtfbm7LdOk4-H-_f8Cc7mj8_57QwWFF8HqDU3gpXGEK51Wok4YSMEq3BKMp1VIu4pVqjCwnCBGUtNacqSFjTjGdOaTpOLUbdz7aY3PshV27smvpQkZYjQNEt5RJERVbjWe2cq2TlbKzdIjOTOQDkaKKOBcm-gHCKJjiQfwc3CuD_pf1g_q-N09Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450234647</pqid></control><display><type>article</type><title>QPSO-CD: quantum-behaved particle swarm optimization algorithm with Cauchy distribution</title><source>Springer Link</source><creator>Bhatia, Amandeep Singh ; Saggi, Mandeep Kaur ; Zheng, Shenggen</creator><creatorcontrib>Bhatia, Amandeep Singh ; Saggi, Mandeep Kaur ; Zheng, Shenggen</creatorcontrib><description>Motivated by the particle swarm optimization (PSO) and quantum computing theory, we have presented a quantum variant of PSO (QPSO) mutated with Cauchy operator and natural selection mechanism (QPSO-CD) from evolutionary computations. The performance of proposed hybrid quantum-behaved particle swarm optimization with Cauchy distribution (QPSO-CD) is investigated and compared with its counterparts based on a set of benchmark problems. Moreover, QPSO-CD is employed in well-studied constrained engineering problems to investigate its applicability. Further, the correctness and time complexity of QPSO-CD are analyzed and compared with the classical PSO. It has been proved that QPSO-CD handles such real-life problems efficiently and can attain superior solutions in most of the problems. The experimental results shown that QPSO associated with Cauchy distribution and natural selection strategy outperforms other variants in context of stability and convergence.</description><identifier>ISSN: 1570-0755</identifier><identifier>EISSN: 1573-1332</identifier><identifier>DOI: 10.1007/s11128-020-02842-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Data Structures and Information Theory ; Mathematical Physics ; Optimization ; Particle swarm optimization ; Physics ; Physics and Astronomy ; Quantum Computing ; Quantum Information Technology ; Quantum Physics ; Spintronics</subject><ispartof>Quantum information processing, 2020-10, Vol.19 (10), Article 345</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-bb7e85dee27bb4f87e81e885f1426b6f827b31a0f18e781554ededd3c36765bb3</citedby><cites>FETCH-LOGICAL-c319t-bb7e85dee27bb4f87e81e885f1426b6f827b31a0f18e781554ededd3c36765bb3</cites><orcidid>0000-0002-4891-6160</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bhatia, Amandeep Singh</creatorcontrib><creatorcontrib>Saggi, Mandeep Kaur</creatorcontrib><creatorcontrib>Zheng, Shenggen</creatorcontrib><title>QPSO-CD: quantum-behaved particle swarm optimization algorithm with Cauchy distribution</title><title>Quantum information processing</title><addtitle>Quantum Inf Process</addtitle><description>Motivated by the particle swarm optimization (PSO) and quantum computing theory, we have presented a quantum variant of PSO (QPSO) mutated with Cauchy operator and natural selection mechanism (QPSO-CD) from evolutionary computations. The performance of proposed hybrid quantum-behaved particle swarm optimization with Cauchy distribution (QPSO-CD) is investigated and compared with its counterparts based on a set of benchmark problems. Moreover, QPSO-CD is employed in well-studied constrained engineering problems to investigate its applicability. Further, the correctness and time complexity of QPSO-CD are analyzed and compared with the classical PSO. It has been proved that QPSO-CD handles such real-life problems efficiently and can attain superior solutions in most of the problems. The experimental results shown that QPSO associated with Cauchy distribution and natural selection strategy outperforms other variants in context of stability and convergence.</description><subject>Algorithms</subject><subject>Data Structures and Information Theory</subject><subject>Mathematical Physics</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Computing</subject><subject>Quantum Information Technology</subject><subject>Quantum Physics</subject><subject>Spintronics</subject><issn>1570-0755</issn><issn>1573-1332</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UFtLwzAYLaLgnP4BnwI-R3Npmuib1CsMpqj4GJI23TLWy5LUUX-92Sr45sN3P-d8cJLkHKNLjBC_8hhjIiAiKIZICRwOkglmnEJMKTnc9_HEGTtOTrxfIURwJrJJ8vn68jaH-d0N2PSqCX0NtVmqL1OCTrlgi7UBfqtcDdou2Np-q2DbBqj1onU2LGuwjRnkqi-WAyitD87qfgc5TY4qtfbm7LdOk4-H-_f8Cc7mj8_57QwWFF8HqDU3gpXGEK51Wok4YSMEq3BKMp1VIu4pVqjCwnCBGUtNacqSFjTjGdOaTpOLUbdz7aY3PshV27smvpQkZYjQNEt5RJERVbjWe2cq2TlbKzdIjOTOQDkaKKOBcm-gHCKJjiQfwc3CuD_pf1g_q-N09Q</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Bhatia, Amandeep Singh</creator><creator>Saggi, Mandeep Kaur</creator><creator>Zheng, Shenggen</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4891-6160</orcidid></search><sort><creationdate>20201001</creationdate><title>QPSO-CD: quantum-behaved particle swarm optimization algorithm with Cauchy distribution</title><author>Bhatia, Amandeep Singh ; Saggi, Mandeep Kaur ; Zheng, Shenggen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-bb7e85dee27bb4f87e81e885f1426b6f827b31a0f18e781554ededd3c36765bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Data Structures and Information Theory</topic><topic>Mathematical Physics</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Computing</topic><topic>Quantum Information Technology</topic><topic>Quantum Physics</topic><topic>Spintronics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhatia, Amandeep Singh</creatorcontrib><creatorcontrib>Saggi, Mandeep Kaur</creatorcontrib><creatorcontrib>Zheng, Shenggen</creatorcontrib><collection>CrossRef</collection><jtitle>Quantum information processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhatia, Amandeep Singh</au><au>Saggi, Mandeep Kaur</au><au>Zheng, Shenggen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>QPSO-CD: quantum-behaved particle swarm optimization algorithm with Cauchy distribution</atitle><jtitle>Quantum information processing</jtitle><stitle>Quantum Inf Process</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>19</volume><issue>10</issue><artnum>345</artnum><issn>1570-0755</issn><eissn>1573-1332</eissn><abstract>Motivated by the particle swarm optimization (PSO) and quantum computing theory, we have presented a quantum variant of PSO (QPSO) mutated with Cauchy operator and natural selection mechanism (QPSO-CD) from evolutionary computations. The performance of proposed hybrid quantum-behaved particle swarm optimization with Cauchy distribution (QPSO-CD) is investigated and compared with its counterparts based on a set of benchmark problems. Moreover, QPSO-CD is employed in well-studied constrained engineering problems to investigate its applicability. Further, the correctness and time complexity of QPSO-CD are analyzed and compared with the classical PSO. It has been proved that QPSO-CD handles such real-life problems efficiently and can attain superior solutions in most of the problems. The experimental results shown that QPSO associated with Cauchy distribution and natural selection strategy outperforms other variants in context of stability and convergence.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11128-020-02842-y</doi><orcidid>https://orcid.org/0000-0002-4891-6160</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1570-0755
ispartof Quantum information processing, 2020-10, Vol.19 (10), Article 345
issn 1570-0755
1573-1332
language eng
recordid cdi_proquest_journals_2450234647
source Springer Link
subjects Algorithms
Data Structures and Information Theory
Mathematical Physics
Optimization
Particle swarm optimization
Physics
Physics and Astronomy
Quantum Computing
Quantum Information Technology
Quantum Physics
Spintronics
title QPSO-CD: quantum-behaved particle swarm optimization algorithm with Cauchy distribution
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A16%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=QPSO-CD:%20quantum-behaved%20particle%20swarm%20optimization%20algorithm%20with%20Cauchy%20distribution&rft.jtitle=Quantum%20information%20processing&rft.au=Bhatia,%20Amandeep%20Singh&rft.date=2020-10-01&rft.volume=19&rft.issue=10&rft.artnum=345&rft.issn=1570-0755&rft.eissn=1573-1332&rft_id=info:doi/10.1007/s11128-020-02842-y&rft_dat=%3Cproquest_cross%3E2450234647%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-bb7e85dee27bb4f87e81e885f1426b6f827b31a0f18e781554ededd3c36765bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2450234647&rft_id=info:pmid/&rfr_iscdi=true