Loading…
QPSO-CD: quantum-behaved particle swarm optimization algorithm with Cauchy distribution
Motivated by the particle swarm optimization (PSO) and quantum computing theory, we have presented a quantum variant of PSO (QPSO) mutated with Cauchy operator and natural selection mechanism (QPSO-CD) from evolutionary computations. The performance of proposed hybrid quantum-behaved particle swarm...
Saved in:
Published in: | Quantum information processing 2020-10, Vol.19 (10), Article 345 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-bb7e85dee27bb4f87e81e885f1426b6f827b31a0f18e781554ededd3c36765bb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-bb7e85dee27bb4f87e81e885f1426b6f827b31a0f18e781554ededd3c36765bb3 |
container_end_page | |
container_issue | 10 |
container_start_page | |
container_title | Quantum information processing |
container_volume | 19 |
creator | Bhatia, Amandeep Singh Saggi, Mandeep Kaur Zheng, Shenggen |
description | Motivated by the particle swarm optimization (PSO) and quantum computing theory, we have presented a quantum variant of PSO (QPSO) mutated with Cauchy operator and natural selection mechanism (QPSO-CD) from evolutionary computations. The performance of proposed hybrid quantum-behaved particle swarm optimization with Cauchy distribution (QPSO-CD) is investigated and compared with its counterparts based on a set of benchmark problems. Moreover, QPSO-CD is employed in well-studied constrained engineering problems to investigate its applicability. Further, the correctness and time complexity of QPSO-CD are analyzed and compared with the classical PSO. It has been proved that QPSO-CD handles such real-life problems efficiently and can attain superior solutions in most of the problems. The experimental results shown that QPSO associated with Cauchy distribution and natural selection strategy outperforms other variants in context of stability and convergence. |
doi_str_mv | 10.1007/s11128-020-02842-y |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2450234647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450234647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-bb7e85dee27bb4f87e81e885f1426b6f827b31a0f18e781554ededd3c36765bb3</originalsourceid><addsrcrecordid>eNp9UFtLwzAYLaLgnP4BnwI-R3Npmuib1CsMpqj4GJI23TLWy5LUUX-92Sr45sN3P-d8cJLkHKNLjBC_8hhjIiAiKIZICRwOkglmnEJMKTnc9_HEGTtOTrxfIURwJrJJ8vn68jaH-d0N2PSqCX0NtVmqL1OCTrlgi7UBfqtcDdou2Np-q2DbBqj1onU2LGuwjRnkqi-WAyitD87qfgc5TY4qtfbm7LdOk4-H-_f8Cc7mj8_57QwWFF8HqDU3gpXGEK51Wok4YSMEq3BKMp1VIu4pVqjCwnCBGUtNacqSFjTjGdOaTpOLUbdz7aY3PshV27smvpQkZYjQNEt5RJERVbjWe2cq2TlbKzdIjOTOQDkaKKOBcm-gHCKJjiQfwc3CuD_pf1g_q-N09Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450234647</pqid></control><display><type>article</type><title>QPSO-CD: quantum-behaved particle swarm optimization algorithm with Cauchy distribution</title><source>Springer Link</source><creator>Bhatia, Amandeep Singh ; Saggi, Mandeep Kaur ; Zheng, Shenggen</creator><creatorcontrib>Bhatia, Amandeep Singh ; Saggi, Mandeep Kaur ; Zheng, Shenggen</creatorcontrib><description>Motivated by the particle swarm optimization (PSO) and quantum computing theory, we have presented a quantum variant of PSO (QPSO) mutated with Cauchy operator and natural selection mechanism (QPSO-CD) from evolutionary computations. The performance of proposed hybrid quantum-behaved particle swarm optimization with Cauchy distribution (QPSO-CD) is investigated and compared with its counterparts based on a set of benchmark problems. Moreover, QPSO-CD is employed in well-studied constrained engineering problems to investigate its applicability. Further, the correctness and time complexity of QPSO-CD are analyzed and compared with the classical PSO. It has been proved that QPSO-CD handles such real-life problems efficiently and can attain superior solutions in most of the problems. The experimental results shown that QPSO associated with Cauchy distribution and natural selection strategy outperforms other variants in context of stability and convergence.</description><identifier>ISSN: 1570-0755</identifier><identifier>EISSN: 1573-1332</identifier><identifier>DOI: 10.1007/s11128-020-02842-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Data Structures and Information Theory ; Mathematical Physics ; Optimization ; Particle swarm optimization ; Physics ; Physics and Astronomy ; Quantum Computing ; Quantum Information Technology ; Quantum Physics ; Spintronics</subject><ispartof>Quantum information processing, 2020-10, Vol.19 (10), Article 345</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-bb7e85dee27bb4f87e81e885f1426b6f827b31a0f18e781554ededd3c36765bb3</citedby><cites>FETCH-LOGICAL-c319t-bb7e85dee27bb4f87e81e885f1426b6f827b31a0f18e781554ededd3c36765bb3</cites><orcidid>0000-0002-4891-6160</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bhatia, Amandeep Singh</creatorcontrib><creatorcontrib>Saggi, Mandeep Kaur</creatorcontrib><creatorcontrib>Zheng, Shenggen</creatorcontrib><title>QPSO-CD: quantum-behaved particle swarm optimization algorithm with Cauchy distribution</title><title>Quantum information processing</title><addtitle>Quantum Inf Process</addtitle><description>Motivated by the particle swarm optimization (PSO) and quantum computing theory, we have presented a quantum variant of PSO (QPSO) mutated with Cauchy operator and natural selection mechanism (QPSO-CD) from evolutionary computations. The performance of proposed hybrid quantum-behaved particle swarm optimization with Cauchy distribution (QPSO-CD) is investigated and compared with its counterparts based on a set of benchmark problems. Moreover, QPSO-CD is employed in well-studied constrained engineering problems to investigate its applicability. Further, the correctness and time complexity of QPSO-CD are analyzed and compared with the classical PSO. It has been proved that QPSO-CD handles such real-life problems efficiently and can attain superior solutions in most of the problems. The experimental results shown that QPSO associated with Cauchy distribution and natural selection strategy outperforms other variants in context of stability and convergence.</description><subject>Algorithms</subject><subject>Data Structures and Information Theory</subject><subject>Mathematical Physics</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Computing</subject><subject>Quantum Information Technology</subject><subject>Quantum Physics</subject><subject>Spintronics</subject><issn>1570-0755</issn><issn>1573-1332</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UFtLwzAYLaLgnP4BnwI-R3Npmuib1CsMpqj4GJI23TLWy5LUUX-92Sr45sN3P-d8cJLkHKNLjBC_8hhjIiAiKIZICRwOkglmnEJMKTnc9_HEGTtOTrxfIURwJrJJ8vn68jaH-d0N2PSqCX0NtVmqL1OCTrlgi7UBfqtcDdou2Np-q2DbBqj1onU2LGuwjRnkqi-WAyitD87qfgc5TY4qtfbm7LdOk4-H-_f8Cc7mj8_57QwWFF8HqDU3gpXGEK51Wok4YSMEq3BKMp1VIu4pVqjCwnCBGUtNacqSFjTjGdOaTpOLUbdz7aY3PshV27smvpQkZYjQNEt5RJERVbjWe2cq2TlbKzdIjOTOQDkaKKOBcm-gHCKJjiQfwc3CuD_pf1g_q-N09Q</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Bhatia, Amandeep Singh</creator><creator>Saggi, Mandeep Kaur</creator><creator>Zheng, Shenggen</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4891-6160</orcidid></search><sort><creationdate>20201001</creationdate><title>QPSO-CD: quantum-behaved particle swarm optimization algorithm with Cauchy distribution</title><author>Bhatia, Amandeep Singh ; Saggi, Mandeep Kaur ; Zheng, Shenggen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-bb7e85dee27bb4f87e81e885f1426b6f827b31a0f18e781554ededd3c36765bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Data Structures and Information Theory</topic><topic>Mathematical Physics</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Computing</topic><topic>Quantum Information Technology</topic><topic>Quantum Physics</topic><topic>Spintronics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhatia, Amandeep Singh</creatorcontrib><creatorcontrib>Saggi, Mandeep Kaur</creatorcontrib><creatorcontrib>Zheng, Shenggen</creatorcontrib><collection>CrossRef</collection><jtitle>Quantum information processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhatia, Amandeep Singh</au><au>Saggi, Mandeep Kaur</au><au>Zheng, Shenggen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>QPSO-CD: quantum-behaved particle swarm optimization algorithm with Cauchy distribution</atitle><jtitle>Quantum information processing</jtitle><stitle>Quantum Inf Process</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>19</volume><issue>10</issue><artnum>345</artnum><issn>1570-0755</issn><eissn>1573-1332</eissn><abstract>Motivated by the particle swarm optimization (PSO) and quantum computing theory, we have presented a quantum variant of PSO (QPSO) mutated with Cauchy operator and natural selection mechanism (QPSO-CD) from evolutionary computations. The performance of proposed hybrid quantum-behaved particle swarm optimization with Cauchy distribution (QPSO-CD) is investigated and compared with its counterparts based on a set of benchmark problems. Moreover, QPSO-CD is employed in well-studied constrained engineering problems to investigate its applicability. Further, the correctness and time complexity of QPSO-CD are analyzed and compared with the classical PSO. It has been proved that QPSO-CD handles such real-life problems efficiently and can attain superior solutions in most of the problems. The experimental results shown that QPSO associated with Cauchy distribution and natural selection strategy outperforms other variants in context of stability and convergence.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11128-020-02842-y</doi><orcidid>https://orcid.org/0000-0002-4891-6160</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1570-0755 |
ispartof | Quantum information processing, 2020-10, Vol.19 (10), Article 345 |
issn | 1570-0755 1573-1332 |
language | eng |
recordid | cdi_proquest_journals_2450234647 |
source | Springer Link |
subjects | Algorithms Data Structures and Information Theory Mathematical Physics Optimization Particle swarm optimization Physics Physics and Astronomy Quantum Computing Quantum Information Technology Quantum Physics Spintronics |
title | QPSO-CD: quantum-behaved particle swarm optimization algorithm with Cauchy distribution |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A16%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=QPSO-CD:%20quantum-behaved%20particle%20swarm%20optimization%20algorithm%20with%20Cauchy%20distribution&rft.jtitle=Quantum%20information%20processing&rft.au=Bhatia,%20Amandeep%20Singh&rft.date=2020-10-01&rft.volume=19&rft.issue=10&rft.artnum=345&rft.issn=1570-0755&rft.eissn=1573-1332&rft_id=info:doi/10.1007/s11128-020-02842-y&rft_dat=%3Cproquest_cross%3E2450234647%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-bb7e85dee27bb4f87e81e885f1426b6f827b31a0f18e781554ededd3c36765bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2450234647&rft_id=info:pmid/&rfr_iscdi=true |