Loading…
Quantum Stackelberg–Bertrand duopoly
We apply Li et al.’s “minimal” quantization rules (Phys. Lett. A 306 , 73, 2002) to investigate the quantum version of the Stackelberg–Bertrand duopoly, especially how the quantum entanglement affects the second-mover advantage in the Stackelberg–Bertrand duopoly. It is found that positive quantum e...
Saved in:
Published in: | Quantum information processing 2020-10, Vol.19 (10), Article 373 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-c9f20b9a4bab7aca33b12d77d0c9a7ba7ddb5a50288ca72b25026c21a708a9aa3 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-c9f20b9a4bab7aca33b12d77d0c9a7ba7ddb5a50288ca72b25026c21a708a9aa3 |
container_end_page | |
container_issue | 10 |
container_start_page | |
container_title | Quantum information processing |
container_volume | 19 |
creator | Lo, C. F. Yeung, C. F. |
description | We apply Li et al.’s “minimal” quantization rules (Phys. Lett. A
306
, 73, 2002) to investigate the quantum version of the Stackelberg–Bertrand duopoly, especially how the quantum entanglement affects the second-mover advantage in the Stackelberg–Bertrand duopoly. It is found that positive quantum entanglement is more favourable to the profit of the leader and destroys the second-mover advantage. |
doi_str_mv | 10.1007/s11128-020-02886-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2450251105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450251105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c9f20b9a4bab7aca33b12d77d0c9a7ba7ddb5a50288ca72b25026c21a708a9aa3</originalsourceid><addsrcrecordid>eNp9kM9KAzEQxoMoWKsv4KkgeIvOJM1m96jFf1AQUc9hks0W63a3JruH3nwH39AnMe0K3jwMMzDf983wY-wU4QIB9GVERJFzEJAqzzMOe2yESkuOUor93ZxWWqlDdhTjEkBglmcjdv7UU9P1q8lzR-7d19aHxffn17UPXaCmnJR9u27rzTE7qKiO_uS3j9nr7c3L7J7PH-8eZldz7iQWHXdFJcAWNLVkNTmS0qIotS7BFaQt6bK0itT2RUdaWJHGzAkkDTkVRHLMzobcdWg_eh87s2z70KSTRkyTWCGCSioxqFxoYwy-MuvwtqKwMQhmy8MMPEziYXY8DCSTHEwxiZuFD3_R_7h-AAAPYyk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450251105</pqid></control><display><type>article</type><title>Quantum Stackelberg–Bertrand duopoly</title><source>Springer Link</source><creator>Lo, C. F. ; Yeung, C. F.</creator><creatorcontrib>Lo, C. F. ; Yeung, C. F.</creatorcontrib><description>We apply Li et al.’s “minimal” quantization rules (Phys. Lett. A
306
, 73, 2002) to investigate the quantum version of the Stackelberg–Bertrand duopoly, especially how the quantum entanglement affects the second-mover advantage in the Stackelberg–Bertrand duopoly. It is found that positive quantum entanglement is more favourable to the profit of the leader and destroys the second-mover advantage.</description><identifier>ISSN: 1570-0755</identifier><identifier>EISSN: 1573-1332</identifier><identifier>DOI: 10.1007/s11128-020-02886-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Data Structures and Information Theory ; Mathematical Physics ; Physics ; Physics and Astronomy ; Quantum Computing ; Quantum entanglement ; Quantum Information Technology ; Quantum mechanics ; Quantum Physics ; Spintronics</subject><ispartof>Quantum information processing, 2020-10, Vol.19 (10), Article 373</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c9f20b9a4bab7aca33b12d77d0c9a7ba7ddb5a50288ca72b25026c21a708a9aa3</citedby><cites>FETCH-LOGICAL-c319t-c9f20b9a4bab7aca33b12d77d0c9a7ba7ddb5a50288ca72b25026c21a708a9aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lo, C. F.</creatorcontrib><creatorcontrib>Yeung, C. F.</creatorcontrib><title>Quantum Stackelberg–Bertrand duopoly</title><title>Quantum information processing</title><addtitle>Quantum Inf Process</addtitle><description>We apply Li et al.’s “minimal” quantization rules (Phys. Lett. A
306
, 73, 2002) to investigate the quantum version of the Stackelberg–Bertrand duopoly, especially how the quantum entanglement affects the second-mover advantage in the Stackelberg–Bertrand duopoly. It is found that positive quantum entanglement is more favourable to the profit of the leader and destroys the second-mover advantage.</description><subject>Data Structures and Information Theory</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Computing</subject><subject>Quantum entanglement</subject><subject>Quantum Information Technology</subject><subject>Quantum mechanics</subject><subject>Quantum Physics</subject><subject>Spintronics</subject><issn>1570-0755</issn><issn>1573-1332</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM9KAzEQxoMoWKsv4KkgeIvOJM1m96jFf1AQUc9hks0W63a3JruH3nwH39AnMe0K3jwMMzDf983wY-wU4QIB9GVERJFzEJAqzzMOe2yESkuOUor93ZxWWqlDdhTjEkBglmcjdv7UU9P1q8lzR-7d19aHxffn17UPXaCmnJR9u27rzTE7qKiO_uS3j9nr7c3L7J7PH-8eZldz7iQWHXdFJcAWNLVkNTmS0qIotS7BFaQt6bK0itT2RUdaWJHGzAkkDTkVRHLMzobcdWg_eh87s2z70KSTRkyTWCGCSioxqFxoYwy-MuvwtqKwMQhmy8MMPEziYXY8DCSTHEwxiZuFD3_R_7h-AAAPYyk</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Lo, C. F.</creator><creator>Yeung, C. F.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201001</creationdate><title>Quantum Stackelberg–Bertrand duopoly</title><author>Lo, C. F. ; Yeung, C. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c9f20b9a4bab7aca33b12d77d0c9a7ba7ddb5a50288ca72b25026c21a708a9aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Data Structures and Information Theory</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Computing</topic><topic>Quantum entanglement</topic><topic>Quantum Information Technology</topic><topic>Quantum mechanics</topic><topic>Quantum Physics</topic><topic>Spintronics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lo, C. F.</creatorcontrib><creatorcontrib>Yeung, C. F.</creatorcontrib><collection>CrossRef</collection><jtitle>Quantum information processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lo, C. F.</au><au>Yeung, C. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Stackelberg–Bertrand duopoly</atitle><jtitle>Quantum information processing</jtitle><stitle>Quantum Inf Process</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>19</volume><issue>10</issue><artnum>373</artnum><issn>1570-0755</issn><eissn>1573-1332</eissn><abstract>We apply Li et al.’s “minimal” quantization rules (Phys. Lett. A
306
, 73, 2002) to investigate the quantum version of the Stackelberg–Bertrand duopoly, especially how the quantum entanglement affects the second-mover advantage in the Stackelberg–Bertrand duopoly. It is found that positive quantum entanglement is more favourable to the profit of the leader and destroys the second-mover advantage.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11128-020-02886-0</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1570-0755 |
ispartof | Quantum information processing, 2020-10, Vol.19 (10), Article 373 |
issn | 1570-0755 1573-1332 |
language | eng |
recordid | cdi_proquest_journals_2450251105 |
source | Springer Link |
subjects | Data Structures and Information Theory Mathematical Physics Physics Physics and Astronomy Quantum Computing Quantum entanglement Quantum Information Technology Quantum mechanics Quantum Physics Spintronics |
title | Quantum Stackelberg–Bertrand duopoly |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A45%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Stackelberg%E2%80%93Bertrand%20duopoly&rft.jtitle=Quantum%20information%20processing&rft.au=Lo,%20C.%20F.&rft.date=2020-10-01&rft.volume=19&rft.issue=10&rft.artnum=373&rft.issn=1570-0755&rft.eissn=1573-1332&rft_id=info:doi/10.1007/s11128-020-02886-0&rft_dat=%3Cproquest_cross%3E2450251105%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-c9f20b9a4bab7aca33b12d77d0c9a7ba7ddb5a50288ca72b25026c21a708a9aa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2450251105&rft_id=info:pmid/&rfr_iscdi=true |