Loading…

Quantum Stackelberg–Bertrand duopoly

We apply Li et al.’s “minimal” quantization rules (Phys. Lett. A 306 , 73, 2002) to investigate the quantum version of the Stackelberg–Bertrand duopoly, especially how the quantum entanglement affects the second-mover advantage in the Stackelberg–Bertrand duopoly. It is found that positive quantum e...

Full description

Saved in:
Bibliographic Details
Published in:Quantum information processing 2020-10, Vol.19 (10), Article 373
Main Authors: Lo, C. F., Yeung, C. F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-c9f20b9a4bab7aca33b12d77d0c9a7ba7ddb5a50288ca72b25026c21a708a9aa3
cites cdi_FETCH-LOGICAL-c319t-c9f20b9a4bab7aca33b12d77d0c9a7ba7ddb5a50288ca72b25026c21a708a9aa3
container_end_page
container_issue 10
container_start_page
container_title Quantum information processing
container_volume 19
creator Lo, C. F.
Yeung, C. F.
description We apply Li et al.’s “minimal” quantization rules (Phys. Lett. A 306 , 73, 2002) to investigate the quantum version of the Stackelberg–Bertrand duopoly, especially how the quantum entanglement affects the second-mover advantage in the Stackelberg–Bertrand duopoly. It is found that positive quantum entanglement is more favourable to the profit of the leader and destroys the second-mover advantage.
doi_str_mv 10.1007/s11128-020-02886-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2450251105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450251105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c9f20b9a4bab7aca33b12d77d0c9a7ba7ddb5a50288ca72b25026c21a708a9aa3</originalsourceid><addsrcrecordid>eNp9kM9KAzEQxoMoWKsv4KkgeIvOJM1m96jFf1AQUc9hks0W63a3JruH3nwH39AnMe0K3jwMMzDf983wY-wU4QIB9GVERJFzEJAqzzMOe2yESkuOUor93ZxWWqlDdhTjEkBglmcjdv7UU9P1q8lzR-7d19aHxffn17UPXaCmnJR9u27rzTE7qKiO_uS3j9nr7c3L7J7PH-8eZldz7iQWHXdFJcAWNLVkNTmS0qIotS7BFaQt6bK0itT2RUdaWJHGzAkkDTkVRHLMzobcdWg_eh87s2z70KSTRkyTWCGCSioxqFxoYwy-MuvwtqKwMQhmy8MMPEziYXY8DCSTHEwxiZuFD3_R_7h-AAAPYyk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450251105</pqid></control><display><type>article</type><title>Quantum Stackelberg–Bertrand duopoly</title><source>Springer Link</source><creator>Lo, C. F. ; Yeung, C. F.</creator><creatorcontrib>Lo, C. F. ; Yeung, C. F.</creatorcontrib><description>We apply Li et al.’s “minimal” quantization rules (Phys. Lett. A 306 , 73, 2002) to investigate the quantum version of the Stackelberg–Bertrand duopoly, especially how the quantum entanglement affects the second-mover advantage in the Stackelberg–Bertrand duopoly. It is found that positive quantum entanglement is more favourable to the profit of the leader and destroys the second-mover advantage.</description><identifier>ISSN: 1570-0755</identifier><identifier>EISSN: 1573-1332</identifier><identifier>DOI: 10.1007/s11128-020-02886-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Data Structures and Information Theory ; Mathematical Physics ; Physics ; Physics and Astronomy ; Quantum Computing ; Quantum entanglement ; Quantum Information Technology ; Quantum mechanics ; Quantum Physics ; Spintronics</subject><ispartof>Quantum information processing, 2020-10, Vol.19 (10), Article 373</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c9f20b9a4bab7aca33b12d77d0c9a7ba7ddb5a50288ca72b25026c21a708a9aa3</citedby><cites>FETCH-LOGICAL-c319t-c9f20b9a4bab7aca33b12d77d0c9a7ba7ddb5a50288ca72b25026c21a708a9aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lo, C. F.</creatorcontrib><creatorcontrib>Yeung, C. F.</creatorcontrib><title>Quantum Stackelberg–Bertrand duopoly</title><title>Quantum information processing</title><addtitle>Quantum Inf Process</addtitle><description>We apply Li et al.’s “minimal” quantization rules (Phys. Lett. A 306 , 73, 2002) to investigate the quantum version of the Stackelberg–Bertrand duopoly, especially how the quantum entanglement affects the second-mover advantage in the Stackelberg–Bertrand duopoly. It is found that positive quantum entanglement is more favourable to the profit of the leader and destroys the second-mover advantage.</description><subject>Data Structures and Information Theory</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Computing</subject><subject>Quantum entanglement</subject><subject>Quantum Information Technology</subject><subject>Quantum mechanics</subject><subject>Quantum Physics</subject><subject>Spintronics</subject><issn>1570-0755</issn><issn>1573-1332</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM9KAzEQxoMoWKsv4KkgeIvOJM1m96jFf1AQUc9hks0W63a3JruH3nwH39AnMe0K3jwMMzDf983wY-wU4QIB9GVERJFzEJAqzzMOe2yESkuOUor93ZxWWqlDdhTjEkBglmcjdv7UU9P1q8lzR-7d19aHxffn17UPXaCmnJR9u27rzTE7qKiO_uS3j9nr7c3L7J7PH-8eZldz7iQWHXdFJcAWNLVkNTmS0qIotS7BFaQt6bK0itT2RUdaWJHGzAkkDTkVRHLMzobcdWg_eh87s2z70KSTRkyTWCGCSioxqFxoYwy-MuvwtqKwMQhmy8MMPEziYXY8DCSTHEwxiZuFD3_R_7h-AAAPYyk</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Lo, C. F.</creator><creator>Yeung, C. F.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201001</creationdate><title>Quantum Stackelberg–Bertrand duopoly</title><author>Lo, C. F. ; Yeung, C. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c9f20b9a4bab7aca33b12d77d0c9a7ba7ddb5a50288ca72b25026c21a708a9aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Data Structures and Information Theory</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Computing</topic><topic>Quantum entanglement</topic><topic>Quantum Information Technology</topic><topic>Quantum mechanics</topic><topic>Quantum Physics</topic><topic>Spintronics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lo, C. F.</creatorcontrib><creatorcontrib>Yeung, C. F.</creatorcontrib><collection>CrossRef</collection><jtitle>Quantum information processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lo, C. F.</au><au>Yeung, C. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Stackelberg–Bertrand duopoly</atitle><jtitle>Quantum information processing</jtitle><stitle>Quantum Inf Process</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>19</volume><issue>10</issue><artnum>373</artnum><issn>1570-0755</issn><eissn>1573-1332</eissn><abstract>We apply Li et al.’s “minimal” quantization rules (Phys. Lett. A 306 , 73, 2002) to investigate the quantum version of the Stackelberg–Bertrand duopoly, especially how the quantum entanglement affects the second-mover advantage in the Stackelberg–Bertrand duopoly. It is found that positive quantum entanglement is more favourable to the profit of the leader and destroys the second-mover advantage.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11128-020-02886-0</doi></addata></record>
fulltext fulltext
identifier ISSN: 1570-0755
ispartof Quantum information processing, 2020-10, Vol.19 (10), Article 373
issn 1570-0755
1573-1332
language eng
recordid cdi_proquest_journals_2450251105
source Springer Link
subjects Data Structures and Information Theory
Mathematical Physics
Physics
Physics and Astronomy
Quantum Computing
Quantum entanglement
Quantum Information Technology
Quantum mechanics
Quantum Physics
Spintronics
title Quantum Stackelberg–Bertrand duopoly
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A45%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Stackelberg%E2%80%93Bertrand%20duopoly&rft.jtitle=Quantum%20information%20processing&rft.au=Lo,%20C.%20F.&rft.date=2020-10-01&rft.volume=19&rft.issue=10&rft.artnum=373&rft.issn=1570-0755&rft.eissn=1573-1332&rft_id=info:doi/10.1007/s11128-020-02886-0&rft_dat=%3Cproquest_cross%3E2450251105%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-c9f20b9a4bab7aca33b12d77d0c9a7ba7ddb5a50288ca72b25026c21a708a9aa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2450251105&rft_id=info:pmid/&rfr_iscdi=true