Loading…

Upward Planar Morphs

We prove that, given two topologically-equivalent upward planar straight-line drawings of an n -vertex directed graph G , there always exists a morph between them such that all the intermediate drawings of the morph are upward planar and straight-line. Such a morph consists of O (1) morphing steps i...

Full description

Saved in:
Bibliographic Details
Published in:Algorithmica 2020-10, Vol.82 (10), p.2985-3017
Main Authors: Da Lozzo, Giordano, Di Battista, Giuseppe, Frati, Fabrizio, Patrignani, Maurizio, Roselli, Vincenzo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-b75a1d89dde588acef97d27fae5b14f11f8cc5f2933dbf00abf10458501feb0e3
cites cdi_FETCH-LOGICAL-c319t-b75a1d89dde588acef97d27fae5b14f11f8cc5f2933dbf00abf10458501feb0e3
container_end_page 3017
container_issue 10
container_start_page 2985
container_title Algorithmica
container_volume 82
creator Da Lozzo, Giordano
Di Battista, Giuseppe
Frati, Fabrizio
Patrignani, Maurizio
Roselli, Vincenzo
description We prove that, given two topologically-equivalent upward planar straight-line drawings of an n -vertex directed graph G , there always exists a morph between them such that all the intermediate drawings of the morph are upward planar and straight-line. Such a morph consists of O (1) morphing steps if G is a reduced planar st -graph, O ( n ) morphing steps if G is a planar st -graph, O ( n ) morphing steps if G is a reduced upward planar graph, and O ( n 2 ) morphing steps if G is a general upward planar graph. Further, we show that Ω ( n ) morphing steps might be necessary for an upward planar morph between two topologically-equivalent upward planar straight-line drawings of an n -vertex path.
doi_str_mv 10.1007/s00453-020-00714-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2450270600</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450270600</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b75a1d89dde588acef97d27fae5b14f11f8cc5f2933dbf00abf10458501feb0e3</originalsourceid><addsrcrecordid>eNp9j01LAzEQhoMouFZvnjwVPMfO5GOTPUrRKlT0YM8h2SRqqbtr0iL-e6MreOtpGHifd-Yh5ALhCgHULAMIySkwoGVFQesDUqHgjIIUeEgqQKWpqFEdk5Oc1wDIVFNX5Hw1fNrkp08b29k0fejT8JpPyVG0mxzO_uaErG5vnud3dPm4uJ9fL2nLsdlSp6RFrxvvg9TatiE2yjMVbZAORUSMum1lZA3n3kUA6yKWN7UEjMFB4BNyOfYOqf_Yhbw1636XunLSMCGBKagBSoqNqTb1OacQzZDe3m36Mgjmx96M9qbYm197UxeIj1Au4e4lpP_qPdQ3XrxbIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450270600</pqid></control><display><type>article</type><title>Upward Planar Morphs</title><source>Springer Nature</source><creator>Da Lozzo, Giordano ; Di Battista, Giuseppe ; Frati, Fabrizio ; Patrignani, Maurizio ; Roselli, Vincenzo</creator><creatorcontrib>Da Lozzo, Giordano ; Di Battista, Giuseppe ; Frati, Fabrizio ; Patrignani, Maurizio ; Roselli, Vincenzo</creatorcontrib><description>We prove that, given two topologically-equivalent upward planar straight-line drawings of an n -vertex directed graph G , there always exists a morph between them such that all the intermediate drawings of the morph are upward planar and straight-line. Such a morph consists of O (1) morphing steps if G is a reduced planar st -graph, O ( n ) morphing steps if G is a planar st -graph, O ( n ) morphing steps if G is a reduced upward planar graph, and O ( n 2 ) morphing steps if G is a general upward planar graph. Further, we show that Ω ( n ) morphing steps might be necessary for an upward planar morph between two topologically-equivalent upward planar straight-line drawings of an n -vertex path.</description><identifier>ISSN: 0178-4617</identifier><identifier>EISSN: 1432-0541</identifier><identifier>DOI: 10.1007/s00453-020-00714-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithm Analysis and Problem Complexity ; Algorithms ; Computer Science ; Computer Systems Organization and Communication Networks ; Data Structures and Information Theory ; Equivalence ; Graph theory ; Mathematics of Computing ; Morphing ; Theory of Computation</subject><ispartof>Algorithmica, 2020-10, Vol.82 (10), p.2985-3017</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b75a1d89dde588acef97d27fae5b14f11f8cc5f2933dbf00abf10458501feb0e3</citedby><cites>FETCH-LOGICAL-c319t-b75a1d89dde588acef97d27fae5b14f11f8cc5f2933dbf00abf10458501feb0e3</cites><orcidid>0000-0001-5987-8713</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Da Lozzo, Giordano</creatorcontrib><creatorcontrib>Di Battista, Giuseppe</creatorcontrib><creatorcontrib>Frati, Fabrizio</creatorcontrib><creatorcontrib>Patrignani, Maurizio</creatorcontrib><creatorcontrib>Roselli, Vincenzo</creatorcontrib><title>Upward Planar Morphs</title><title>Algorithmica</title><addtitle>Algorithmica</addtitle><description>We prove that, given two topologically-equivalent upward planar straight-line drawings of an n -vertex directed graph G , there always exists a morph between them such that all the intermediate drawings of the morph are upward planar and straight-line. Such a morph consists of O (1) morphing steps if G is a reduced planar st -graph, O ( n ) morphing steps if G is a planar st -graph, O ( n ) morphing steps if G is a reduced upward planar graph, and O ( n 2 ) morphing steps if G is a general upward planar graph. Further, we show that Ω ( n ) morphing steps might be necessary for an upward planar morph between two topologically-equivalent upward planar straight-line drawings of an n -vertex path.</description><subject>Algorithm Analysis and Problem Complexity</subject><subject>Algorithms</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Data Structures and Information Theory</subject><subject>Equivalence</subject><subject>Graph theory</subject><subject>Mathematics of Computing</subject><subject>Morphing</subject><subject>Theory of Computation</subject><issn>0178-4617</issn><issn>1432-0541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9j01LAzEQhoMouFZvnjwVPMfO5GOTPUrRKlT0YM8h2SRqqbtr0iL-e6MreOtpGHifd-Yh5ALhCgHULAMIySkwoGVFQesDUqHgjIIUeEgqQKWpqFEdk5Oc1wDIVFNX5Hw1fNrkp08b29k0fejT8JpPyVG0mxzO_uaErG5vnud3dPm4uJ9fL2nLsdlSp6RFrxvvg9TatiE2yjMVbZAORUSMum1lZA3n3kUA6yKWN7UEjMFB4BNyOfYOqf_Yhbw1636XunLSMCGBKagBSoqNqTb1OacQzZDe3m36Mgjmx96M9qbYm197UxeIj1Au4e4lpP_qPdQ3XrxbIA</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Da Lozzo, Giordano</creator><creator>Di Battista, Giuseppe</creator><creator>Frati, Fabrizio</creator><creator>Patrignani, Maurizio</creator><creator>Roselli, Vincenzo</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5987-8713</orcidid></search><sort><creationdate>20201001</creationdate><title>Upward Planar Morphs</title><author>Da Lozzo, Giordano ; Di Battista, Giuseppe ; Frati, Fabrizio ; Patrignani, Maurizio ; Roselli, Vincenzo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b75a1d89dde588acef97d27fae5b14f11f8cc5f2933dbf00abf10458501feb0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithm Analysis and Problem Complexity</topic><topic>Algorithms</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Data Structures and Information Theory</topic><topic>Equivalence</topic><topic>Graph theory</topic><topic>Mathematics of Computing</topic><topic>Morphing</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Da Lozzo, Giordano</creatorcontrib><creatorcontrib>Di Battista, Giuseppe</creatorcontrib><creatorcontrib>Frati, Fabrizio</creatorcontrib><creatorcontrib>Patrignani, Maurizio</creatorcontrib><creatorcontrib>Roselli, Vincenzo</creatorcontrib><collection>CrossRef</collection><jtitle>Algorithmica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Da Lozzo, Giordano</au><au>Di Battista, Giuseppe</au><au>Frati, Fabrizio</au><au>Patrignani, Maurizio</au><au>Roselli, Vincenzo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Upward Planar Morphs</atitle><jtitle>Algorithmica</jtitle><stitle>Algorithmica</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>82</volume><issue>10</issue><spage>2985</spage><epage>3017</epage><pages>2985-3017</pages><issn>0178-4617</issn><eissn>1432-0541</eissn><abstract>We prove that, given two topologically-equivalent upward planar straight-line drawings of an n -vertex directed graph G , there always exists a morph between them such that all the intermediate drawings of the morph are upward planar and straight-line. Such a morph consists of O (1) morphing steps if G is a reduced planar st -graph, O ( n ) morphing steps if G is a planar st -graph, O ( n ) morphing steps if G is a reduced upward planar graph, and O ( n 2 ) morphing steps if G is a general upward planar graph. Further, we show that Ω ( n ) morphing steps might be necessary for an upward planar morph between two topologically-equivalent upward planar straight-line drawings of an n -vertex path.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00453-020-00714-6</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0001-5987-8713</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0178-4617
ispartof Algorithmica, 2020-10, Vol.82 (10), p.2985-3017
issn 0178-4617
1432-0541
language eng
recordid cdi_proquest_journals_2450270600
source Springer Nature
subjects Algorithm Analysis and Problem Complexity
Algorithms
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Equivalence
Graph theory
Mathematics of Computing
Morphing
Theory of Computation
title Upward Planar Morphs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T21%3A54%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Upward%20Planar%20Morphs&rft.jtitle=Algorithmica&rft.au=Da%20Lozzo,%20Giordano&rft.date=2020-10-01&rft.volume=82&rft.issue=10&rft.spage=2985&rft.epage=3017&rft.pages=2985-3017&rft.issn=0178-4617&rft.eissn=1432-0541&rft_id=info:doi/10.1007/s00453-020-00714-6&rft_dat=%3Cproquest_cross%3E2450270600%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-b75a1d89dde588acef97d27fae5b14f11f8cc5f2933dbf00abf10458501feb0e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2450270600&rft_id=info:pmid/&rfr_iscdi=true