Loading…
Modules in which every surjective endomorphism has a μ-small kernel
In this paper we introduce the notion of μ -Hopfian modules which is a proper generalization of that of Hopfian modules. We give some characterizations and properties of these modules. We prove that a ring R is semisimple if and only if every R -module is μ -Hopfian. Moreover, we prove that the μ -H...
Saved in:
Published in: | Annali dell'Università di Ferrara. Sezione 7. Scienze matematiche 2020-11, Vol.66 (2), p.325-337 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2341-d5cc323ddee8042d6dceb60886b0a9c919138dabc5cfc04cf235e20fe747cb63 |
---|---|
cites | cdi_FETCH-LOGICAL-c2341-d5cc323ddee8042d6dceb60886b0a9c919138dabc5cfc04cf235e20fe747cb63 |
container_end_page | 337 |
container_issue | 2 |
container_start_page | 325 |
container_title | Annali dell'Università di Ferrara. Sezione 7. Scienze matematiche |
container_volume | 66 |
creator | El Moussaouy, Abderrahim Ziane, M’Hammed |
description | In this paper we introduce the notion of
μ
-Hopfian modules which is a proper generalization of that of Hopfian modules. We give some characterizations and properties of these modules. We prove that a ring
R
is semisimple if and only if every
R
-module is
μ
-Hopfian. Moreover, we prove that the
μ
-Hopfian property is Morita invariant. Further, we prove an analogue to Hilbert’s basis Theorem for
μ
-Hopfian modules. |
doi_str_mv | 10.1007/s11565-020-00347-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2450272348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450272348</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2341-d5cc323ddee8042d6dceb60886b0a9c919138dabc5cfc04cf235e20fe747cb63</originalsourceid><addsrcrecordid>eNp9kMlOwzAURS0EEqXwA6wssTY8TxmWqIxSEZvuLcd-ISkZit0U9d_4Br6JQJDYsXpvcc-90iHknMMlB0ivIuc60QwEMACpUsYPyIxnYnw0h0MyAyWBSQHimJzEuAbQSvF8Rm6eej80GGnd0feqdhXFHYY9jUNYo9vWO6TY-b7tw6aqY0srG6mlnx8strZp6CuGDptTclTaJuLZ752T1d3tavHAls_3j4vrJXNCKs68dk4K6T1iBkr4xDssEsiypACbu5znXGbeFk670oFypZAaBZSYqtQViZyTi6l2E_q3AePWrPshdOOiEUqDSMeVbEyJKeVCH2PA0mxC3dqwNxzMtywzyTKjLPMjy_ARkhMUx3D3guGv-h_qC4R6bW4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450272348</pqid></control><display><type>article</type><title>Modules in which every surjective endomorphism has a μ-small kernel</title><source>Springer Nature</source><creator>El Moussaouy, Abderrahim ; Ziane, M’Hammed</creator><creatorcontrib>El Moussaouy, Abderrahim ; Ziane, M’Hammed</creatorcontrib><description>In this paper we introduce the notion of
μ
-Hopfian modules which is a proper generalization of that of Hopfian modules. We give some characterizations and properties of these modules. We prove that a ring
R
is semisimple if and only if every
R
-module is
μ
-Hopfian. Moreover, we prove that the
μ
-Hopfian property is Morita invariant. Further, we prove an analogue to Hilbert’s basis Theorem for
μ
-Hopfian modules.</description><identifier>ISSN: 0430-3202</identifier><identifier>EISSN: 1827-1510</identifier><identifier>DOI: 10.1007/s11565-020-00347-1</identifier><language>eng</language><publisher>Milan: Springer Milan</publisher><subject>Algebraic Geometry ; Analysis ; Geometry ; History of Mathematical Sciences ; Mathematics ; Mathematics and Statistics ; Modules ; Numerical Analysis</subject><ispartof>Annali dell'Università di Ferrara. Sezione 7. Scienze matematiche, 2020-11, Vol.66 (2), p.325-337</ispartof><rights>Università degli Studi di Ferrara 2020</rights><rights>Università degli Studi di Ferrara 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2341-d5cc323ddee8042d6dceb60886b0a9c919138dabc5cfc04cf235e20fe747cb63</citedby><cites>FETCH-LOGICAL-c2341-d5cc323ddee8042d6dceb60886b0a9c919138dabc5cfc04cf235e20fe747cb63</cites><orcidid>0000-0001-9630-4698</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>El Moussaouy, Abderrahim</creatorcontrib><creatorcontrib>Ziane, M’Hammed</creatorcontrib><title>Modules in which every surjective endomorphism has a μ-small kernel</title><title>Annali dell'Università di Ferrara. Sezione 7. Scienze matematiche</title><addtitle>Ann Univ Ferrara</addtitle><description>In this paper we introduce the notion of
μ
-Hopfian modules which is a proper generalization of that of Hopfian modules. We give some characterizations and properties of these modules. We prove that a ring
R
is semisimple if and only if every
R
-module is
μ
-Hopfian. Moreover, we prove that the
μ
-Hopfian property is Morita invariant. Further, we prove an analogue to Hilbert’s basis Theorem for
μ
-Hopfian modules.</description><subject>Algebraic Geometry</subject><subject>Analysis</subject><subject>Geometry</subject><subject>History of Mathematical Sciences</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Modules</subject><subject>Numerical Analysis</subject><issn>0430-3202</issn><issn>1827-1510</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMlOwzAURS0EEqXwA6wssTY8TxmWqIxSEZvuLcd-ISkZit0U9d_4Br6JQJDYsXpvcc-90iHknMMlB0ivIuc60QwEMACpUsYPyIxnYnw0h0MyAyWBSQHimJzEuAbQSvF8Rm6eej80GGnd0feqdhXFHYY9jUNYo9vWO6TY-b7tw6aqY0srG6mlnx8strZp6CuGDptTclTaJuLZ752T1d3tavHAls_3j4vrJXNCKs68dk4K6T1iBkr4xDssEsiypACbu5znXGbeFk670oFypZAaBZSYqtQViZyTi6l2E_q3AePWrPshdOOiEUqDSMeVbEyJKeVCH2PA0mxC3dqwNxzMtywzyTKjLPMjy_ARkhMUx3D3guGv-h_qC4R6bW4</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>El Moussaouy, Abderrahim</creator><creator>Ziane, M’Hammed</creator><general>Springer Milan</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9630-4698</orcidid></search><sort><creationdate>20201101</creationdate><title>Modules in which every surjective endomorphism has a μ-small kernel</title><author>El Moussaouy, Abderrahim ; Ziane, M’Hammed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2341-d5cc323ddee8042d6dceb60886b0a9c919138dabc5cfc04cf235e20fe747cb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algebraic Geometry</topic><topic>Analysis</topic><topic>Geometry</topic><topic>History of Mathematical Sciences</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Modules</topic><topic>Numerical Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El Moussaouy, Abderrahim</creatorcontrib><creatorcontrib>Ziane, M’Hammed</creatorcontrib><collection>CrossRef</collection><jtitle>Annali dell'Università di Ferrara. Sezione 7. Scienze matematiche</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El Moussaouy, Abderrahim</au><au>Ziane, M’Hammed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modules in which every surjective endomorphism has a μ-small kernel</atitle><jtitle>Annali dell'Università di Ferrara. Sezione 7. Scienze matematiche</jtitle><stitle>Ann Univ Ferrara</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>66</volume><issue>2</issue><spage>325</spage><epage>337</epage><pages>325-337</pages><issn>0430-3202</issn><eissn>1827-1510</eissn><abstract>In this paper we introduce the notion of
μ
-Hopfian modules which is a proper generalization of that of Hopfian modules. We give some characterizations and properties of these modules. We prove that a ring
R
is semisimple if and only if every
R
-module is
μ
-Hopfian. Moreover, we prove that the
μ
-Hopfian property is Morita invariant. Further, we prove an analogue to Hilbert’s basis Theorem for
μ
-Hopfian modules.</abstract><cop>Milan</cop><pub>Springer Milan</pub><doi>10.1007/s11565-020-00347-1</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9630-4698</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0430-3202 |
ispartof | Annali dell'Università di Ferrara. Sezione 7. Scienze matematiche, 2020-11, Vol.66 (2), p.325-337 |
issn | 0430-3202 1827-1510 |
language | eng |
recordid | cdi_proquest_journals_2450272348 |
source | Springer Nature |
subjects | Algebraic Geometry Analysis Geometry History of Mathematical Sciences Mathematics Mathematics and Statistics Modules Numerical Analysis |
title | Modules in which every surjective endomorphism has a μ-small kernel |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A57%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modules%20in%20which%20every%20surjective%20endomorphism%20has%20a%20%CE%BC-small%20kernel&rft.jtitle=Annali%20dell'Universit%C3%A0%20di%20Ferrara.%20Sezione%207.%20Scienze%20matematiche&rft.au=El%C2%A0Moussaouy,%20Abderrahim&rft.date=2020-11-01&rft.volume=66&rft.issue=2&rft.spage=325&rft.epage=337&rft.pages=325-337&rft.issn=0430-3202&rft.eissn=1827-1510&rft_id=info:doi/10.1007/s11565-020-00347-1&rft_dat=%3Cproquest_cross%3E2450272348%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2341-d5cc323ddee8042d6dceb60886b0a9c919138dabc5cfc04cf235e20fe747cb63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2450272348&rft_id=info:pmid/&rfr_iscdi=true |