Loading…

X-Ray Structure, DFT Study of p-Chlorobenzoic Acid, and the Effect of In Silico Molecular Docking on Tankyrase I Enzyme

p -Chlorbenzoic acid carries a 4-chloro position atom where it may be important in coordinated with and control certain biological parameters , it can inhibit the action of specific enzyme in organisms. X‑ray data collection gives information about the analysis of the covalent and the non-covalent i...

Full description

Saved in:
Bibliographic Details
Published in:Russian journal of bioorganic chemistry 2020-07, Vol.46 (4), p.542-550
Main Authors: El Sayed, Doaa S, o, Sabine
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:p -Chlorbenzoic acid carries a 4-chloro position atom where it may be important in coordinated with and control certain biological parameters , it can inhibit the action of specific enzyme in organisms. X‑ray data collection gives information about the analysis of the covalent and the non-covalent interactions in 3D quantitatively. Recrystallization of p -chlorobenzoic acid was carried out to remove any impurities and to be prepared in pure crystal form. X-ray analytical technique studied the structure and geometrical parameters. The experimental data were compared with the calculated ones for the optimized structure obtained from density functional theory (DFT) studies. X-ray structure of p -chlorobenzoic acid is found in dimer form stabilized with intermolecular H-bond interaction. Infrared spectra and thermal analysis of this compound were studied. DFT calculations were carried out and structural geometrical parameters were evaluated. In-silico molecular docking of tested ligand in Tankyrase I enzyme shows a number of hydrogen bond interactions, chlorine and aromatic ring interaction and polar contact, these predicted interactions can inhibit the active sites of amino acids of Tankyrase I enzyme, so this inhibition can control some biological activities especially anticancer effect.
ISSN:1068-1620
1608-330X
DOI:10.1134/S1068162020040184