Loading…
Spiral wave chimeras for coupled oscillators with inertia
We report the appearance and the metamorphoses of spiral wave chimera states in coupled phase oscillators with inertia. First, when the coupling strength is small enough, the system behavior resembles classical two-dimensional (2D) Kuramoto-Shima spiral chimeras with bell-shape frequency characteris...
Saved in:
Published in: | The European physical journal. ST, Special topics Special topics, 2020-09, Vol.229 (12-13), p.2327-2340 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c325t-8bdf7b9ecad0b4c980e4f460aad978ce86383aa598676e4c74dd195733ba43be3 |
---|---|
cites | cdi_FETCH-LOGICAL-c325t-8bdf7b9ecad0b4c980e4f460aad978ce86383aa598676e4c74dd195733ba43be3 |
container_end_page | 2340 |
container_issue | 12-13 |
container_start_page | 2327 |
container_title | The European physical journal. ST, Special topics |
container_volume | 229 |
creator | Maistrenko, Volodymyr Sudakov, Oleksandr Maistrenko, Yuri |
description | We report the appearance and the metamorphoses of spiral wave chimera states in coupled phase oscillators with inertia. First, when the coupling strength is small enough, the system behavior resembles classical two-dimensional (2D) Kuramoto-Shima spiral chimeras with bell-shape frequency characteristic of the incoherent cores [Y. Kuramoto, S.I. Shima, Prog. Theor. Phys. Supp.
150
, 115 (2003); S.I. Shima, Y. Kuramoto, Phys. Rev. E.
69
, 036213 (2004)]. As the coupling increases, the cores acquire concentric regions of constant time-averaged frequencies, the chimera becomes quasiperiodic. Eventually, with a subsequent increase in the coupling strength, only one such region is left, i.e., the whole core becomes frequency-coherent. An essential modification of the system behavior occurs, when the parameter point enters the so-called
solitary
region. Then, isolated oscillators are normally present on the spiral core background of the chimera states. These solitary oscillators do not participate in the common spiraling around the cores; instead, they start to oscillate with different time-averaged frequencies (Poincaré winding numbers). The number and the disposition of solitary oscillators can be any, given by the initial conditions. At a further increase in the coupling, the spiraling disappears, and the system behavior passes to a sort of spatiotemporal chaos. |
doi_str_mv | 10.1140/epjst/e2020-900279-x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2450402980</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450402980</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-8bdf7b9ecad0b4c980e4f460aad978ce86383aa598676e4c74dd195733ba43be3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwBywssQ4dv5J4iSpeUiUWwNpynAl1ldbBTmn5e0IDYsdqZnHPndEh5JLBNWMSZtitUj9DDhwyDcALne2PyIRpxbJcAjv-3YVSp-QspRWAyrkWE6KfOx9tS3f2A6lb-jVGm2gTInVh27VY05Ccb1vbh5jozvdL6jcYe2_PyUlj24QXP3NKXu9uX-YP2eLp_nF-s8ic4KrPyqpuikqjszVU0ukSUDYyB2trXZQOy1yUwlqly7zIUbpC1vXwbCFEZaWoUEzJ1djbxfC-xdSbVdjGzXDScKlAAh86h5QcUy6GlCI2pot-beOnYWC-JZmDJHOQZEZJZj9gasTSEN-8Yfwr_5f7AsGIbpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450402980</pqid></control><display><type>article</type><title>Spiral wave chimeras for coupled oscillators with inertia</title><source>Springer Link</source><creator>Maistrenko, Volodymyr ; Sudakov, Oleksandr ; Maistrenko, Yuri</creator><creatorcontrib>Maistrenko, Volodymyr ; Sudakov, Oleksandr ; Maistrenko, Yuri</creatorcontrib><description>We report the appearance and the metamorphoses of spiral wave chimera states in coupled phase oscillators with inertia. First, when the coupling strength is small enough, the system behavior resembles classical two-dimensional (2D) Kuramoto-Shima spiral chimeras with bell-shape frequency characteristic of the incoherent cores [Y. Kuramoto, S.I. Shima, Prog. Theor. Phys. Supp.
150
, 115 (2003); S.I. Shima, Y. Kuramoto, Phys. Rev. E.
69
, 036213 (2004)]. As the coupling increases, the cores acquire concentric regions of constant time-averaged frequencies, the chimera becomes quasiperiodic. Eventually, with a subsequent increase in the coupling strength, only one such region is left, i.e., the whole core becomes frequency-coherent. An essential modification of the system behavior occurs, when the parameter point enters the so-called
solitary
region. Then, isolated oscillators are normally present on the spiral core background of the chimera states. These solitary oscillators do not participate in the common spiraling around the cores; instead, they start to oscillate with different time-averaged frequencies (Poincaré winding numbers). The number and the disposition of solitary oscillators can be any, given by the initial conditions. At a further increase in the coupling, the spiraling disappears, and the system behavior passes to a sort of spatiotemporal chaos.</description><identifier>ISSN: 1951-6355</identifier><identifier>EISSN: 1951-6401</identifier><identifier>DOI: 10.1140/epjst/e2020-900279-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Atomic ; Classical and Continuum Physics ; Condensed Matter Physics ; Coupling ; Inertia ; Initial conditions ; Materials Science ; Measurement Science and Instrumentation ; Molecular ; Nonlinear and Complex Physics ; Optical and Plasma Physics ; Oscillators ; Parameter modification ; Physics ; Physics and Astronomy ; Regular Article</subject><ispartof>The European physical journal. ST, Special topics, 2020-09, Vol.229 (12-13), p.2327-2340</ispartof><rights>EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-8bdf7b9ecad0b4c980e4f460aad978ce86383aa598676e4c74dd195733ba43be3</citedby><cites>FETCH-LOGICAL-c325t-8bdf7b9ecad0b4c980e4f460aad978ce86383aa598676e4c74dd195733ba43be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Maistrenko, Volodymyr</creatorcontrib><creatorcontrib>Sudakov, Oleksandr</creatorcontrib><creatorcontrib>Maistrenko, Yuri</creatorcontrib><title>Spiral wave chimeras for coupled oscillators with inertia</title><title>The European physical journal. ST, Special topics</title><addtitle>Eur. Phys. J. Spec. Top</addtitle><description>We report the appearance and the metamorphoses of spiral wave chimera states in coupled phase oscillators with inertia. First, when the coupling strength is small enough, the system behavior resembles classical two-dimensional (2D) Kuramoto-Shima spiral chimeras with bell-shape frequency characteristic of the incoherent cores [Y. Kuramoto, S.I. Shima, Prog. Theor. Phys. Supp.
150
, 115 (2003); S.I. Shima, Y. Kuramoto, Phys. Rev. E.
69
, 036213 (2004)]. As the coupling increases, the cores acquire concentric regions of constant time-averaged frequencies, the chimera becomes quasiperiodic. Eventually, with a subsequent increase in the coupling strength, only one such region is left, i.e., the whole core becomes frequency-coherent. An essential modification of the system behavior occurs, when the parameter point enters the so-called
solitary
region. Then, isolated oscillators are normally present on the spiral core background of the chimera states. These solitary oscillators do not participate in the common spiraling around the cores; instead, they start to oscillate with different time-averaged frequencies (Poincaré winding numbers). The number and the disposition of solitary oscillators can be any, given by the initial conditions. At a further increase in the coupling, the spiraling disappears, and the system behavior passes to a sort of spatiotemporal chaos.</description><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Condensed Matter Physics</subject><subject>Coupling</subject><subject>Inertia</subject><subject>Initial conditions</subject><subject>Materials Science</subject><subject>Measurement Science and Instrumentation</subject><subject>Molecular</subject><subject>Nonlinear and Complex Physics</subject><subject>Optical and Plasma Physics</subject><subject>Oscillators</subject><subject>Parameter modification</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular Article</subject><issn>1951-6355</issn><issn>1951-6401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwBywssQ4dv5J4iSpeUiUWwNpynAl1ldbBTmn5e0IDYsdqZnHPndEh5JLBNWMSZtitUj9DDhwyDcALne2PyIRpxbJcAjv-3YVSp-QspRWAyrkWE6KfOx9tS3f2A6lb-jVGm2gTInVh27VY05Ccb1vbh5jozvdL6jcYe2_PyUlj24QXP3NKXu9uX-YP2eLp_nF-s8ic4KrPyqpuikqjszVU0ukSUDYyB2trXZQOy1yUwlqly7zIUbpC1vXwbCFEZaWoUEzJ1djbxfC-xdSbVdjGzXDScKlAAh86h5QcUy6GlCI2pot-beOnYWC-JZmDJHOQZEZJZj9gasTSEN-8Yfwr_5f7AsGIbpg</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Maistrenko, Volodymyr</creator><creator>Sudakov, Oleksandr</creator><creator>Maistrenko, Yuri</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200901</creationdate><title>Spiral wave chimeras for coupled oscillators with inertia</title><author>Maistrenko, Volodymyr ; Sudakov, Oleksandr ; Maistrenko, Yuri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-8bdf7b9ecad0b4c980e4f460aad978ce86383aa598676e4c74dd195733ba43be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Condensed Matter Physics</topic><topic>Coupling</topic><topic>Inertia</topic><topic>Initial conditions</topic><topic>Materials Science</topic><topic>Measurement Science and Instrumentation</topic><topic>Molecular</topic><topic>Nonlinear and Complex Physics</topic><topic>Optical and Plasma Physics</topic><topic>Oscillators</topic><topic>Parameter modification</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maistrenko, Volodymyr</creatorcontrib><creatorcontrib>Sudakov, Oleksandr</creatorcontrib><creatorcontrib>Maistrenko, Yuri</creatorcontrib><collection>CrossRef</collection><jtitle>The European physical journal. ST, Special topics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maistrenko, Volodymyr</au><au>Sudakov, Oleksandr</au><au>Maistrenko, Yuri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spiral wave chimeras for coupled oscillators with inertia</atitle><jtitle>The European physical journal. ST, Special topics</jtitle><stitle>Eur. Phys. J. Spec. Top</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>229</volume><issue>12-13</issue><spage>2327</spage><epage>2340</epage><pages>2327-2340</pages><issn>1951-6355</issn><eissn>1951-6401</eissn><abstract>We report the appearance and the metamorphoses of spiral wave chimera states in coupled phase oscillators with inertia. First, when the coupling strength is small enough, the system behavior resembles classical two-dimensional (2D) Kuramoto-Shima spiral chimeras with bell-shape frequency characteristic of the incoherent cores [Y. Kuramoto, S.I. Shima, Prog. Theor. Phys. Supp.
150
, 115 (2003); S.I. Shima, Y. Kuramoto, Phys. Rev. E.
69
, 036213 (2004)]. As the coupling increases, the cores acquire concentric regions of constant time-averaged frequencies, the chimera becomes quasiperiodic. Eventually, with a subsequent increase in the coupling strength, only one such region is left, i.e., the whole core becomes frequency-coherent. An essential modification of the system behavior occurs, when the parameter point enters the so-called
solitary
region. Then, isolated oscillators are normally present on the spiral core background of the chimera states. These solitary oscillators do not participate in the common spiraling around the cores; instead, they start to oscillate with different time-averaged frequencies (Poincaré winding numbers). The number and the disposition of solitary oscillators can be any, given by the initial conditions. At a further increase in the coupling, the spiraling disappears, and the system behavior passes to a sort of spatiotemporal chaos.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjst/e2020-900279-x</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1951-6355 |
ispartof | The European physical journal. ST, Special topics, 2020-09, Vol.229 (12-13), p.2327-2340 |
issn | 1951-6355 1951-6401 |
language | eng |
recordid | cdi_proquest_journals_2450402980 |
source | Springer Link |
subjects | Atomic Classical and Continuum Physics Condensed Matter Physics Coupling Inertia Initial conditions Materials Science Measurement Science and Instrumentation Molecular Nonlinear and Complex Physics Optical and Plasma Physics Oscillators Parameter modification Physics Physics and Astronomy Regular Article |
title | Spiral wave chimeras for coupled oscillators with inertia |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A58%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spiral%20wave%20chimeras%20for%20coupled%20oscillators%20with%20inertia&rft.jtitle=The%20European%20physical%20journal.%20ST,%20Special%20topics&rft.au=Maistrenko,%20Volodymyr&rft.date=2020-09-01&rft.volume=229&rft.issue=12-13&rft.spage=2327&rft.epage=2340&rft.pages=2327-2340&rft.issn=1951-6355&rft.eissn=1951-6401&rft_id=info:doi/10.1140/epjst/e2020-900279-x&rft_dat=%3Cproquest_cross%3E2450402980%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-8bdf7b9ecad0b4c980e4f460aad978ce86383aa598676e4c74dd195733ba43be3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2450402980&rft_id=info:pmid/&rfr_iscdi=true |