Loading…

Spiral wave chimeras for coupled oscillators with inertia

We report the appearance and the metamorphoses of spiral wave chimera states in coupled phase oscillators with inertia. First, when the coupling strength is small enough, the system behavior resembles classical two-dimensional (2D) Kuramoto-Shima spiral chimeras with bell-shape frequency characteris...

Full description

Saved in:
Bibliographic Details
Published in:The European physical journal. ST, Special topics Special topics, 2020-09, Vol.229 (12-13), p.2327-2340
Main Authors: Maistrenko, Volodymyr, Sudakov, Oleksandr, Maistrenko, Yuri
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c325t-8bdf7b9ecad0b4c980e4f460aad978ce86383aa598676e4c74dd195733ba43be3
cites cdi_FETCH-LOGICAL-c325t-8bdf7b9ecad0b4c980e4f460aad978ce86383aa598676e4c74dd195733ba43be3
container_end_page 2340
container_issue 12-13
container_start_page 2327
container_title The European physical journal. ST, Special topics
container_volume 229
creator Maistrenko, Volodymyr
Sudakov, Oleksandr
Maistrenko, Yuri
description We report the appearance and the metamorphoses of spiral wave chimera states in coupled phase oscillators with inertia. First, when the coupling strength is small enough, the system behavior resembles classical two-dimensional (2D) Kuramoto-Shima spiral chimeras with bell-shape frequency characteristic of the incoherent cores [Y. Kuramoto, S.I. Shima, Prog. Theor. Phys. Supp. 150 , 115 (2003); S.I. Shima, Y. Kuramoto, Phys. Rev. E. 69 , 036213 (2004)]. As the coupling increases, the cores acquire concentric regions of constant time-averaged frequencies, the chimera becomes quasiperiodic. Eventually, with a subsequent increase in the coupling strength, only one such region is left, i.e., the whole core becomes frequency-coherent. An essential modification of the system behavior occurs, when the parameter point enters the so-called solitary region. Then, isolated oscillators are normally present on the spiral core background of the chimera states. These solitary oscillators do not participate in the common spiraling around the cores; instead, they start to oscillate with different time-averaged frequencies (Poincaré winding numbers). The number and the disposition of solitary oscillators can be any, given by the initial conditions. At a further increase in the coupling, the spiraling disappears, and the system behavior passes to a sort of spatiotemporal chaos.
doi_str_mv 10.1140/epjst/e2020-900279-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2450402980</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450402980</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-8bdf7b9ecad0b4c980e4f460aad978ce86383aa598676e4c74dd195733ba43be3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwBywssQ4dv5J4iSpeUiUWwNpynAl1ldbBTmn5e0IDYsdqZnHPndEh5JLBNWMSZtitUj9DDhwyDcALne2PyIRpxbJcAjv-3YVSp-QspRWAyrkWE6KfOx9tS3f2A6lb-jVGm2gTInVh27VY05Ccb1vbh5jozvdL6jcYe2_PyUlj24QXP3NKXu9uX-YP2eLp_nF-s8ic4KrPyqpuikqjszVU0ukSUDYyB2trXZQOy1yUwlqly7zIUbpC1vXwbCFEZaWoUEzJ1djbxfC-xdSbVdjGzXDScKlAAh86h5QcUy6GlCI2pot-beOnYWC-JZmDJHOQZEZJZj9gasTSEN-8Yfwr_5f7AsGIbpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450402980</pqid></control><display><type>article</type><title>Spiral wave chimeras for coupled oscillators with inertia</title><source>Springer Link</source><creator>Maistrenko, Volodymyr ; Sudakov, Oleksandr ; Maistrenko, Yuri</creator><creatorcontrib>Maistrenko, Volodymyr ; Sudakov, Oleksandr ; Maistrenko, Yuri</creatorcontrib><description>We report the appearance and the metamorphoses of spiral wave chimera states in coupled phase oscillators with inertia. First, when the coupling strength is small enough, the system behavior resembles classical two-dimensional (2D) Kuramoto-Shima spiral chimeras with bell-shape frequency characteristic of the incoherent cores [Y. Kuramoto, S.I. Shima, Prog. Theor. Phys. Supp. 150 , 115 (2003); S.I. Shima, Y. Kuramoto, Phys. Rev. E. 69 , 036213 (2004)]. As the coupling increases, the cores acquire concentric regions of constant time-averaged frequencies, the chimera becomes quasiperiodic. Eventually, with a subsequent increase in the coupling strength, only one such region is left, i.e., the whole core becomes frequency-coherent. An essential modification of the system behavior occurs, when the parameter point enters the so-called solitary region. Then, isolated oscillators are normally present on the spiral core background of the chimera states. These solitary oscillators do not participate in the common spiraling around the cores; instead, they start to oscillate with different time-averaged frequencies (Poincaré winding numbers). The number and the disposition of solitary oscillators can be any, given by the initial conditions. At a further increase in the coupling, the spiraling disappears, and the system behavior passes to a sort of spatiotemporal chaos.</description><identifier>ISSN: 1951-6355</identifier><identifier>EISSN: 1951-6401</identifier><identifier>DOI: 10.1140/epjst/e2020-900279-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Atomic ; Classical and Continuum Physics ; Condensed Matter Physics ; Coupling ; Inertia ; Initial conditions ; Materials Science ; Measurement Science and Instrumentation ; Molecular ; Nonlinear and Complex Physics ; Optical and Plasma Physics ; Oscillators ; Parameter modification ; Physics ; Physics and Astronomy ; Regular Article</subject><ispartof>The European physical journal. ST, Special topics, 2020-09, Vol.229 (12-13), p.2327-2340</ispartof><rights>EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-8bdf7b9ecad0b4c980e4f460aad978ce86383aa598676e4c74dd195733ba43be3</citedby><cites>FETCH-LOGICAL-c325t-8bdf7b9ecad0b4c980e4f460aad978ce86383aa598676e4c74dd195733ba43be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Maistrenko, Volodymyr</creatorcontrib><creatorcontrib>Sudakov, Oleksandr</creatorcontrib><creatorcontrib>Maistrenko, Yuri</creatorcontrib><title>Spiral wave chimeras for coupled oscillators with inertia</title><title>The European physical journal. ST, Special topics</title><addtitle>Eur. Phys. J. Spec. Top</addtitle><description>We report the appearance and the metamorphoses of spiral wave chimera states in coupled phase oscillators with inertia. First, when the coupling strength is small enough, the system behavior resembles classical two-dimensional (2D) Kuramoto-Shima spiral chimeras with bell-shape frequency characteristic of the incoherent cores [Y. Kuramoto, S.I. Shima, Prog. Theor. Phys. Supp. 150 , 115 (2003); S.I. Shima, Y. Kuramoto, Phys. Rev. E. 69 , 036213 (2004)]. As the coupling increases, the cores acquire concentric regions of constant time-averaged frequencies, the chimera becomes quasiperiodic. Eventually, with a subsequent increase in the coupling strength, only one such region is left, i.e., the whole core becomes frequency-coherent. An essential modification of the system behavior occurs, when the parameter point enters the so-called solitary region. Then, isolated oscillators are normally present on the spiral core background of the chimera states. These solitary oscillators do not participate in the common spiraling around the cores; instead, they start to oscillate with different time-averaged frequencies (Poincaré winding numbers). The number and the disposition of solitary oscillators can be any, given by the initial conditions. At a further increase in the coupling, the spiraling disappears, and the system behavior passes to a sort of spatiotemporal chaos.</description><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Condensed Matter Physics</subject><subject>Coupling</subject><subject>Inertia</subject><subject>Initial conditions</subject><subject>Materials Science</subject><subject>Measurement Science and Instrumentation</subject><subject>Molecular</subject><subject>Nonlinear and Complex Physics</subject><subject>Optical and Plasma Physics</subject><subject>Oscillators</subject><subject>Parameter modification</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular Article</subject><issn>1951-6355</issn><issn>1951-6401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwBywssQ4dv5J4iSpeUiUWwNpynAl1ldbBTmn5e0IDYsdqZnHPndEh5JLBNWMSZtitUj9DDhwyDcALne2PyIRpxbJcAjv-3YVSp-QspRWAyrkWE6KfOx9tS3f2A6lb-jVGm2gTInVh27VY05Ccb1vbh5jozvdL6jcYe2_PyUlj24QXP3NKXu9uX-YP2eLp_nF-s8ic4KrPyqpuikqjszVU0ukSUDYyB2trXZQOy1yUwlqly7zIUbpC1vXwbCFEZaWoUEzJ1djbxfC-xdSbVdjGzXDScKlAAh86h5QcUy6GlCI2pot-beOnYWC-JZmDJHOQZEZJZj9gasTSEN-8Yfwr_5f7AsGIbpg</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Maistrenko, Volodymyr</creator><creator>Sudakov, Oleksandr</creator><creator>Maistrenko, Yuri</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200901</creationdate><title>Spiral wave chimeras for coupled oscillators with inertia</title><author>Maistrenko, Volodymyr ; Sudakov, Oleksandr ; Maistrenko, Yuri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-8bdf7b9ecad0b4c980e4f460aad978ce86383aa598676e4c74dd195733ba43be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Condensed Matter Physics</topic><topic>Coupling</topic><topic>Inertia</topic><topic>Initial conditions</topic><topic>Materials Science</topic><topic>Measurement Science and Instrumentation</topic><topic>Molecular</topic><topic>Nonlinear and Complex Physics</topic><topic>Optical and Plasma Physics</topic><topic>Oscillators</topic><topic>Parameter modification</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maistrenko, Volodymyr</creatorcontrib><creatorcontrib>Sudakov, Oleksandr</creatorcontrib><creatorcontrib>Maistrenko, Yuri</creatorcontrib><collection>CrossRef</collection><jtitle>The European physical journal. ST, Special topics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maistrenko, Volodymyr</au><au>Sudakov, Oleksandr</au><au>Maistrenko, Yuri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spiral wave chimeras for coupled oscillators with inertia</atitle><jtitle>The European physical journal. ST, Special topics</jtitle><stitle>Eur. Phys. J. Spec. Top</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>229</volume><issue>12-13</issue><spage>2327</spage><epage>2340</epage><pages>2327-2340</pages><issn>1951-6355</issn><eissn>1951-6401</eissn><abstract>We report the appearance and the metamorphoses of spiral wave chimera states in coupled phase oscillators with inertia. First, when the coupling strength is small enough, the system behavior resembles classical two-dimensional (2D) Kuramoto-Shima spiral chimeras with bell-shape frequency characteristic of the incoherent cores [Y. Kuramoto, S.I. Shima, Prog. Theor. Phys. Supp. 150 , 115 (2003); S.I. Shima, Y. Kuramoto, Phys. Rev. E. 69 , 036213 (2004)]. As the coupling increases, the cores acquire concentric regions of constant time-averaged frequencies, the chimera becomes quasiperiodic. Eventually, with a subsequent increase in the coupling strength, only one such region is left, i.e., the whole core becomes frequency-coherent. An essential modification of the system behavior occurs, when the parameter point enters the so-called solitary region. Then, isolated oscillators are normally present on the spiral core background of the chimera states. These solitary oscillators do not participate in the common spiraling around the cores; instead, they start to oscillate with different time-averaged frequencies (Poincaré winding numbers). The number and the disposition of solitary oscillators can be any, given by the initial conditions. At a further increase in the coupling, the spiraling disappears, and the system behavior passes to a sort of spatiotemporal chaos.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjst/e2020-900279-x</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1951-6355
ispartof The European physical journal. ST, Special topics, 2020-09, Vol.229 (12-13), p.2327-2340
issn 1951-6355
1951-6401
language eng
recordid cdi_proquest_journals_2450402980
source Springer Link
subjects Atomic
Classical and Continuum Physics
Condensed Matter Physics
Coupling
Inertia
Initial conditions
Materials Science
Measurement Science and Instrumentation
Molecular
Nonlinear and Complex Physics
Optical and Plasma Physics
Oscillators
Parameter modification
Physics
Physics and Astronomy
Regular Article
title Spiral wave chimeras for coupled oscillators with inertia
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A58%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spiral%20wave%20chimeras%20for%20coupled%20oscillators%20with%20inertia&rft.jtitle=The%20European%20physical%20journal.%20ST,%20Special%20topics&rft.au=Maistrenko,%20Volodymyr&rft.date=2020-09-01&rft.volume=229&rft.issue=12-13&rft.spage=2327&rft.epage=2340&rft.pages=2327-2340&rft.issn=1951-6355&rft.eissn=1951-6401&rft_id=info:doi/10.1140/epjst/e2020-900279-x&rft_dat=%3Cproquest_cross%3E2450402980%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-8bdf7b9ecad0b4c980e4f460aad978ce86383aa598676e4c74dd195733ba43be3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2450402980&rft_id=info:pmid/&rfr_iscdi=true