Loading…

Aqueous miscible organic-layered double hydroxides with improved CO2 adsorption capacity

Potassium-promoted layered double hydroxide (LDH)-derived materials are suitable elevated temperature CO 2 adsorbents for pre-combustion CO 2 capture. A challenge for the commercialization of LDHs as efficient CO 2 adsorbents is their low capacities ( ca. 0.5–0.6 mmol/g@400 °C) due to their hydrogen...

Full description

Saved in:
Bibliographic Details
Published in:Adsorption : journal of the International Adsorption Society 2020-10, Vol.26 (7), p.1127-1135
Main Authors: Zhu, Xuancan, Chen, Chunping, Shi, Yixiang, O’Hare, Dermot, Cai, Ningsheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c356t-361b938ccb9bf2d1c469d200e3a695f1d74f5a6bc8b0a69264166f4ad79c85b63
cites cdi_FETCH-LOGICAL-c356t-361b938ccb9bf2d1c469d200e3a695f1d74f5a6bc8b0a69264166f4ad79c85b63
container_end_page 1135
container_issue 7
container_start_page 1127
container_title Adsorption : journal of the International Adsorption Society
container_volume 26
creator Zhu, Xuancan
Chen, Chunping
Shi, Yixiang
O’Hare, Dermot
Cai, Ningsheng
description Potassium-promoted layered double hydroxide (LDH)-derived materials are suitable elevated temperature CO 2 adsorbents for pre-combustion CO 2 capture. A challenge for the commercialization of LDHs as efficient CO 2 adsorbents is their low capacities ( ca. 0.5–0.6 mmol/g@400 °C) due to their hydrogen-bonded stacked structure. In this study, the aqueous miscible organic solvent treatment (AMOST) was used to exfoliate Mg 3 Al–CO 3 LDH into nanosheets with a flower-like morphology, resulting in high surface areas of 287 and 212 m 2 /g for CC1 (washed with ethanol) and CC2 (washed with acetone), respectively. The exfoliated LDH structure exposed more interlayered CO 2 active sites and promoters for alkali metal modification. Six impregnation solvents, water, acetone, ethanediol, ethanol, DMAC, and methanol were screened to optimize the CO 2 uptake of 20 wt% K 2 CO 3 -promoted CC1. K 2 CO 3 /CC1(ed) using ethanediol as the impregnation solvent reached a CO 2 working capacity of 1.46 mmol/g at 400 °C in the first cycle and 1.23 mmol/g after 10 cycles, twice the capacity of the commercial K 2 CO 3 /MG70. Material characterization indicated that the unexpectedly high performance of K 2 CO 3 /CC1(ed) could be attributed to the uniform K + dispersion on the surface of K 2 CO 3 /CC1(ed) rather than bulk phase formation and the release of the residual solvent during calcination that could generate more paths for CO 2 diffusion.
doi_str_mv 10.1007/s10450-020-00209-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2450403080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450403080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-361b938ccb9bf2d1c469d200e3a695f1d74f5a6bc8b0a69264166f4ad79c85b63</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wisQ6MH3HiZVXxkip1AxI7y7Gd1lUbBzsB8ve4BIkdC9vS-N47Mwehawy3GKC8ixhYATmQdNIlcnaCZrgoSV6VRXmKZiCIyAsO5Tm6iHEHAIKXdIbeFu-D9UPMDi5qV-9t5sNGtU7nezXaYE1m_HAsb0cT_JczNmafrt9m7tAF_5H-l2uSKRN96Hrn20yrTmnXj5forFH7aK9-3zl6fbh_WT7lq_Xj83KxyjUteJ9TjmtBK61rUTfEYM24MATAUsVF0WBTsqZQvNZVDalCOMOcN0yZUuiqqDmdo5spN42TVom93PkhtKmlJAkJAwoVJBWZVDr4GINtZBfcQYVRYpBHgnIiKBM8-UNQsmSikykmcbux4S_6H9c3-VB0Sg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450403080</pqid></control><display><type>article</type><title>Aqueous miscible organic-layered double hydroxides with improved CO2 adsorption capacity</title><source>Springer Link</source><creator>Zhu, Xuancan ; Chen, Chunping ; Shi, Yixiang ; O’Hare, Dermot ; Cai, Ningsheng</creator><creatorcontrib>Zhu, Xuancan ; Chen, Chunping ; Shi, Yixiang ; O’Hare, Dermot ; Cai, Ningsheng</creatorcontrib><description>Potassium-promoted layered double hydroxide (LDH)-derived materials are suitable elevated temperature CO 2 adsorbents for pre-combustion CO 2 capture. A challenge for the commercialization of LDHs as efficient CO 2 adsorbents is their low capacities ( ca. 0.5–0.6 mmol/g@400 °C) due to their hydrogen-bonded stacked structure. In this study, the aqueous miscible organic solvent treatment (AMOST) was used to exfoliate Mg 3 Al–CO 3 LDH into nanosheets with a flower-like morphology, resulting in high surface areas of 287 and 212 m 2 /g for CC1 (washed with ethanol) and CC2 (washed with acetone), respectively. The exfoliated LDH structure exposed more interlayered CO 2 active sites and promoters for alkali metal modification. Six impregnation solvents, water, acetone, ethanediol, ethanol, DMAC, and methanol were screened to optimize the CO 2 uptake of 20 wt% K 2 CO 3 -promoted CC1. K 2 CO 3 /CC1(ed) using ethanediol as the impregnation solvent reached a CO 2 working capacity of 1.46 mmol/g at 400 °C in the first cycle and 1.23 mmol/g after 10 cycles, twice the capacity of the commercial K 2 CO 3 /MG70. Material characterization indicated that the unexpectedly high performance of K 2 CO 3 /CC1(ed) could be attributed to the uniform K + dispersion on the surface of K 2 CO 3 /CC1(ed) rather than bulk phase formation and the release of the residual solvent during calcination that could generate more paths for CO 2 diffusion.</description><identifier>ISSN: 0929-5607</identifier><identifier>EISSN: 1572-8757</identifier><identifier>DOI: 10.1007/s10450-020-00209-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Acetone ; Adsorbents ; Alkali metals ; Carbon dioxide ; Carbon sequestration ; Chemistry ; Chemistry and Materials Science ; Commercialization ; Engineering Thermodynamics ; Ethanol ; Heat and Mass Transfer ; High temperature ; Hydrogen bonding ; Hydroxides ; Impregnation ; Industrial Chemistry/Chemical Engineering ; Miscibility ; Morphology ; Potassium carbonate ; Solvents ; Surfaces and Interfaces ; Thin Films ; Work capacity</subject><ispartof>Adsorption : journal of the International Adsorption Society, 2020-10, Vol.26 (7), p.1127-1135</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-361b938ccb9bf2d1c469d200e3a695f1d74f5a6bc8b0a69264166f4ad79c85b63</citedby><cites>FETCH-LOGICAL-c356t-361b938ccb9bf2d1c469d200e3a695f1d74f5a6bc8b0a69264166f4ad79c85b63</cites><orcidid>0000-0001-8720-9699</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhu, Xuancan</creatorcontrib><creatorcontrib>Chen, Chunping</creatorcontrib><creatorcontrib>Shi, Yixiang</creatorcontrib><creatorcontrib>O’Hare, Dermot</creatorcontrib><creatorcontrib>Cai, Ningsheng</creatorcontrib><title>Aqueous miscible organic-layered double hydroxides with improved CO2 adsorption capacity</title><title>Adsorption : journal of the International Adsorption Society</title><addtitle>Adsorption</addtitle><description>Potassium-promoted layered double hydroxide (LDH)-derived materials are suitable elevated temperature CO 2 adsorbents for pre-combustion CO 2 capture. A challenge for the commercialization of LDHs as efficient CO 2 adsorbents is their low capacities ( ca. 0.5–0.6 mmol/g@400 °C) due to their hydrogen-bonded stacked structure. In this study, the aqueous miscible organic solvent treatment (AMOST) was used to exfoliate Mg 3 Al–CO 3 LDH into nanosheets with a flower-like morphology, resulting in high surface areas of 287 and 212 m 2 /g for CC1 (washed with ethanol) and CC2 (washed with acetone), respectively. The exfoliated LDH structure exposed more interlayered CO 2 active sites and promoters for alkali metal modification. Six impregnation solvents, water, acetone, ethanediol, ethanol, DMAC, and methanol were screened to optimize the CO 2 uptake of 20 wt% K 2 CO 3 -promoted CC1. K 2 CO 3 /CC1(ed) using ethanediol as the impregnation solvent reached a CO 2 working capacity of 1.46 mmol/g at 400 °C in the first cycle and 1.23 mmol/g after 10 cycles, twice the capacity of the commercial K 2 CO 3 /MG70. Material characterization indicated that the unexpectedly high performance of K 2 CO 3 /CC1(ed) could be attributed to the uniform K + dispersion on the surface of K 2 CO 3 /CC1(ed) rather than bulk phase formation and the release of the residual solvent during calcination that could generate more paths for CO 2 diffusion.</description><subject>Acetone</subject><subject>Adsorbents</subject><subject>Alkali metals</subject><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Commercialization</subject><subject>Engineering Thermodynamics</subject><subject>Ethanol</subject><subject>Heat and Mass Transfer</subject><subject>High temperature</subject><subject>Hydrogen bonding</subject><subject>Hydroxides</subject><subject>Impregnation</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Miscibility</subject><subject>Morphology</subject><subject>Potassium carbonate</subject><subject>Solvents</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Work capacity</subject><issn>0929-5607</issn><issn>1572-8757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wisQ6MH3HiZVXxkip1AxI7y7Gd1lUbBzsB8ve4BIkdC9vS-N47Mwehawy3GKC8ixhYATmQdNIlcnaCZrgoSV6VRXmKZiCIyAsO5Tm6iHEHAIKXdIbeFu-D9UPMDi5qV-9t5sNGtU7nezXaYE1m_HAsb0cT_JczNmafrt9m7tAF_5H-l2uSKRN96Hrn20yrTmnXj5forFH7aK9-3zl6fbh_WT7lq_Xj83KxyjUteJ9TjmtBK61rUTfEYM24MATAUsVF0WBTsqZQvNZVDalCOMOcN0yZUuiqqDmdo5spN42TVom93PkhtKmlJAkJAwoVJBWZVDr4GINtZBfcQYVRYpBHgnIiKBM8-UNQsmSikykmcbux4S_6H9c3-VB0Sg</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Zhu, Xuancan</creator><creator>Chen, Chunping</creator><creator>Shi, Yixiang</creator><creator>O’Hare, Dermot</creator><creator>Cai, Ningsheng</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8720-9699</orcidid></search><sort><creationdate>20201001</creationdate><title>Aqueous miscible organic-layered double hydroxides with improved CO2 adsorption capacity</title><author>Zhu, Xuancan ; Chen, Chunping ; Shi, Yixiang ; O’Hare, Dermot ; Cai, Ningsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-361b938ccb9bf2d1c469d200e3a695f1d74f5a6bc8b0a69264166f4ad79c85b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acetone</topic><topic>Adsorbents</topic><topic>Alkali metals</topic><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Commercialization</topic><topic>Engineering Thermodynamics</topic><topic>Ethanol</topic><topic>Heat and Mass Transfer</topic><topic>High temperature</topic><topic>Hydrogen bonding</topic><topic>Hydroxides</topic><topic>Impregnation</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Miscibility</topic><topic>Morphology</topic><topic>Potassium carbonate</topic><topic>Solvents</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Work capacity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Xuancan</creatorcontrib><creatorcontrib>Chen, Chunping</creatorcontrib><creatorcontrib>Shi, Yixiang</creatorcontrib><creatorcontrib>O’Hare, Dermot</creatorcontrib><creatorcontrib>Cai, Ningsheng</creatorcontrib><collection>CrossRef</collection><jtitle>Adsorption : journal of the International Adsorption Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Xuancan</au><au>Chen, Chunping</au><au>Shi, Yixiang</au><au>O’Hare, Dermot</au><au>Cai, Ningsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aqueous miscible organic-layered double hydroxides with improved CO2 adsorption capacity</atitle><jtitle>Adsorption : journal of the International Adsorption Society</jtitle><stitle>Adsorption</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>26</volume><issue>7</issue><spage>1127</spage><epage>1135</epage><pages>1127-1135</pages><issn>0929-5607</issn><eissn>1572-8757</eissn><abstract>Potassium-promoted layered double hydroxide (LDH)-derived materials are suitable elevated temperature CO 2 adsorbents for pre-combustion CO 2 capture. A challenge for the commercialization of LDHs as efficient CO 2 adsorbents is their low capacities ( ca. 0.5–0.6 mmol/g@400 °C) due to their hydrogen-bonded stacked structure. In this study, the aqueous miscible organic solvent treatment (AMOST) was used to exfoliate Mg 3 Al–CO 3 LDH into nanosheets with a flower-like morphology, resulting in high surface areas of 287 and 212 m 2 /g for CC1 (washed with ethanol) and CC2 (washed with acetone), respectively. The exfoliated LDH structure exposed more interlayered CO 2 active sites and promoters for alkali metal modification. Six impregnation solvents, water, acetone, ethanediol, ethanol, DMAC, and methanol were screened to optimize the CO 2 uptake of 20 wt% K 2 CO 3 -promoted CC1. K 2 CO 3 /CC1(ed) using ethanediol as the impregnation solvent reached a CO 2 working capacity of 1.46 mmol/g at 400 °C in the first cycle and 1.23 mmol/g after 10 cycles, twice the capacity of the commercial K 2 CO 3 /MG70. Material characterization indicated that the unexpectedly high performance of K 2 CO 3 /CC1(ed) could be attributed to the uniform K + dispersion on the surface of K 2 CO 3 /CC1(ed) rather than bulk phase formation and the release of the residual solvent during calcination that could generate more paths for CO 2 diffusion.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10450-020-00209-4</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8720-9699</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0929-5607
ispartof Adsorption : journal of the International Adsorption Society, 2020-10, Vol.26 (7), p.1127-1135
issn 0929-5607
1572-8757
language eng
recordid cdi_proquest_journals_2450403080
source Springer Link
subjects Acetone
Adsorbents
Alkali metals
Carbon dioxide
Carbon sequestration
Chemistry
Chemistry and Materials Science
Commercialization
Engineering Thermodynamics
Ethanol
Heat and Mass Transfer
High temperature
Hydrogen bonding
Hydroxides
Impregnation
Industrial Chemistry/Chemical Engineering
Miscibility
Morphology
Potassium carbonate
Solvents
Surfaces and Interfaces
Thin Films
Work capacity
title Aqueous miscible organic-layered double hydroxides with improved CO2 adsorption capacity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A11%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aqueous%20miscible%20organic-layered%20double%20hydroxides%20with%20improved%20CO2%20adsorption%20capacity&rft.jtitle=Adsorption%20:%20journal%20of%20the%20International%20Adsorption%20Society&rft.au=Zhu,%20Xuancan&rft.date=2020-10-01&rft.volume=26&rft.issue=7&rft.spage=1127&rft.epage=1135&rft.pages=1127-1135&rft.issn=0929-5607&rft.eissn=1572-8757&rft_id=info:doi/10.1007/s10450-020-00209-4&rft_dat=%3Cproquest_cross%3E2450403080%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c356t-361b938ccb9bf2d1c469d200e3a695f1d74f5a6bc8b0a69264166f4ad79c85b63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2450403080&rft_id=info:pmid/&rfr_iscdi=true