Loading…
Aqueous miscible organic-layered double hydroxides with improved CO2 adsorption capacity
Potassium-promoted layered double hydroxide (LDH)-derived materials are suitable elevated temperature CO 2 adsorbents for pre-combustion CO 2 capture. A challenge for the commercialization of LDHs as efficient CO 2 adsorbents is their low capacities ( ca. 0.5–0.6 mmol/g@400 °C) due to their hydrogen...
Saved in:
Published in: | Adsorption : journal of the International Adsorption Society 2020-10, Vol.26 (7), p.1127-1135 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c356t-361b938ccb9bf2d1c469d200e3a695f1d74f5a6bc8b0a69264166f4ad79c85b63 |
---|---|
cites | cdi_FETCH-LOGICAL-c356t-361b938ccb9bf2d1c469d200e3a695f1d74f5a6bc8b0a69264166f4ad79c85b63 |
container_end_page | 1135 |
container_issue | 7 |
container_start_page | 1127 |
container_title | Adsorption : journal of the International Adsorption Society |
container_volume | 26 |
creator | Zhu, Xuancan Chen, Chunping Shi, Yixiang O’Hare, Dermot Cai, Ningsheng |
description | Potassium-promoted layered double hydroxide (LDH)-derived materials are suitable elevated temperature CO
2
adsorbents for pre-combustion CO
2
capture. A challenge for the commercialization of LDHs as efficient CO
2
adsorbents is their low capacities (
ca.
0.5–0.6 mmol/g@400 °C) due to their hydrogen-bonded stacked structure. In this study, the aqueous miscible organic solvent treatment (AMOST) was used to exfoliate Mg
3
Al–CO
3
LDH into nanosheets with a flower-like morphology, resulting in high surface areas of 287 and 212 m
2
/g for CC1 (washed with ethanol) and CC2 (washed with acetone), respectively. The exfoliated LDH structure exposed more interlayered CO
2
active sites and promoters for alkali metal modification. Six impregnation solvents, water, acetone, ethanediol, ethanol, DMAC, and methanol were screened to optimize the CO
2
uptake of 20 wt% K
2
CO
3
-promoted CC1. K
2
CO
3
/CC1(ed) using ethanediol as the impregnation solvent reached a CO
2
working capacity of 1.46 mmol/g at 400 °C in the first cycle and 1.23 mmol/g after 10 cycles, twice the capacity of the commercial K
2
CO
3
/MG70. Material characterization indicated that the unexpectedly high performance of K
2
CO
3
/CC1(ed) could be attributed to the uniform K
+
dispersion on the surface of K
2
CO
3
/CC1(ed) rather than bulk phase formation and the release of the residual solvent during calcination that could generate more paths for CO
2
diffusion. |
doi_str_mv | 10.1007/s10450-020-00209-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2450403080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450403080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-361b938ccb9bf2d1c469d200e3a695f1d74f5a6bc8b0a69264166f4ad79c85b63</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wisQ6MH3HiZVXxkip1AxI7y7Gd1lUbBzsB8ve4BIkdC9vS-N47Mwehawy3GKC8ixhYATmQdNIlcnaCZrgoSV6VRXmKZiCIyAsO5Tm6iHEHAIKXdIbeFu-D9UPMDi5qV-9t5sNGtU7nezXaYE1m_HAsb0cT_JczNmafrt9m7tAF_5H-l2uSKRN96Hrn20yrTmnXj5forFH7aK9-3zl6fbh_WT7lq_Xj83KxyjUteJ9TjmtBK61rUTfEYM24MATAUsVF0WBTsqZQvNZVDalCOMOcN0yZUuiqqDmdo5spN42TVom93PkhtKmlJAkJAwoVJBWZVDr4GINtZBfcQYVRYpBHgnIiKBM8-UNQsmSikykmcbux4S_6H9c3-VB0Sg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450403080</pqid></control><display><type>article</type><title>Aqueous miscible organic-layered double hydroxides with improved CO2 adsorption capacity</title><source>Springer Link</source><creator>Zhu, Xuancan ; Chen, Chunping ; Shi, Yixiang ; O’Hare, Dermot ; Cai, Ningsheng</creator><creatorcontrib>Zhu, Xuancan ; Chen, Chunping ; Shi, Yixiang ; O’Hare, Dermot ; Cai, Ningsheng</creatorcontrib><description>Potassium-promoted layered double hydroxide (LDH)-derived materials are suitable elevated temperature CO
2
adsorbents for pre-combustion CO
2
capture. A challenge for the commercialization of LDHs as efficient CO
2
adsorbents is their low capacities (
ca.
0.5–0.6 mmol/g@400 °C) due to their hydrogen-bonded stacked structure. In this study, the aqueous miscible organic solvent treatment (AMOST) was used to exfoliate Mg
3
Al–CO
3
LDH into nanosheets with a flower-like morphology, resulting in high surface areas of 287 and 212 m
2
/g for CC1 (washed with ethanol) and CC2 (washed with acetone), respectively. The exfoliated LDH structure exposed more interlayered CO
2
active sites and promoters for alkali metal modification. Six impregnation solvents, water, acetone, ethanediol, ethanol, DMAC, and methanol were screened to optimize the CO
2
uptake of 20 wt% K
2
CO
3
-promoted CC1. K
2
CO
3
/CC1(ed) using ethanediol as the impregnation solvent reached a CO
2
working capacity of 1.46 mmol/g at 400 °C in the first cycle and 1.23 mmol/g after 10 cycles, twice the capacity of the commercial K
2
CO
3
/MG70. Material characterization indicated that the unexpectedly high performance of K
2
CO
3
/CC1(ed) could be attributed to the uniform K
+
dispersion on the surface of K
2
CO
3
/CC1(ed) rather than bulk phase formation and the release of the residual solvent during calcination that could generate more paths for CO
2
diffusion.</description><identifier>ISSN: 0929-5607</identifier><identifier>EISSN: 1572-8757</identifier><identifier>DOI: 10.1007/s10450-020-00209-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Acetone ; Adsorbents ; Alkali metals ; Carbon dioxide ; Carbon sequestration ; Chemistry ; Chemistry and Materials Science ; Commercialization ; Engineering Thermodynamics ; Ethanol ; Heat and Mass Transfer ; High temperature ; Hydrogen bonding ; Hydroxides ; Impregnation ; Industrial Chemistry/Chemical Engineering ; Miscibility ; Morphology ; Potassium carbonate ; Solvents ; Surfaces and Interfaces ; Thin Films ; Work capacity</subject><ispartof>Adsorption : journal of the International Adsorption Society, 2020-10, Vol.26 (7), p.1127-1135</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-361b938ccb9bf2d1c469d200e3a695f1d74f5a6bc8b0a69264166f4ad79c85b63</citedby><cites>FETCH-LOGICAL-c356t-361b938ccb9bf2d1c469d200e3a695f1d74f5a6bc8b0a69264166f4ad79c85b63</cites><orcidid>0000-0001-8720-9699</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhu, Xuancan</creatorcontrib><creatorcontrib>Chen, Chunping</creatorcontrib><creatorcontrib>Shi, Yixiang</creatorcontrib><creatorcontrib>O’Hare, Dermot</creatorcontrib><creatorcontrib>Cai, Ningsheng</creatorcontrib><title>Aqueous miscible organic-layered double hydroxides with improved CO2 adsorption capacity</title><title>Adsorption : journal of the International Adsorption Society</title><addtitle>Adsorption</addtitle><description>Potassium-promoted layered double hydroxide (LDH)-derived materials are suitable elevated temperature CO
2
adsorbents for pre-combustion CO
2
capture. A challenge for the commercialization of LDHs as efficient CO
2
adsorbents is their low capacities (
ca.
0.5–0.6 mmol/g@400 °C) due to their hydrogen-bonded stacked structure. In this study, the aqueous miscible organic solvent treatment (AMOST) was used to exfoliate Mg
3
Al–CO
3
LDH into nanosheets with a flower-like morphology, resulting in high surface areas of 287 and 212 m
2
/g for CC1 (washed with ethanol) and CC2 (washed with acetone), respectively. The exfoliated LDH structure exposed more interlayered CO
2
active sites and promoters for alkali metal modification. Six impregnation solvents, water, acetone, ethanediol, ethanol, DMAC, and methanol were screened to optimize the CO
2
uptake of 20 wt% K
2
CO
3
-promoted CC1. K
2
CO
3
/CC1(ed) using ethanediol as the impregnation solvent reached a CO
2
working capacity of 1.46 mmol/g at 400 °C in the first cycle and 1.23 mmol/g after 10 cycles, twice the capacity of the commercial K
2
CO
3
/MG70. Material characterization indicated that the unexpectedly high performance of K
2
CO
3
/CC1(ed) could be attributed to the uniform K
+
dispersion on the surface of K
2
CO
3
/CC1(ed) rather than bulk phase formation and the release of the residual solvent during calcination that could generate more paths for CO
2
diffusion.</description><subject>Acetone</subject><subject>Adsorbents</subject><subject>Alkali metals</subject><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Commercialization</subject><subject>Engineering Thermodynamics</subject><subject>Ethanol</subject><subject>Heat and Mass Transfer</subject><subject>High temperature</subject><subject>Hydrogen bonding</subject><subject>Hydroxides</subject><subject>Impregnation</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Miscibility</subject><subject>Morphology</subject><subject>Potassium carbonate</subject><subject>Solvents</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Work capacity</subject><issn>0929-5607</issn><issn>1572-8757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wisQ6MH3HiZVXxkip1AxI7y7Gd1lUbBzsB8ve4BIkdC9vS-N47Mwehawy3GKC8ixhYATmQdNIlcnaCZrgoSV6VRXmKZiCIyAsO5Tm6iHEHAIKXdIbeFu-D9UPMDi5qV-9t5sNGtU7nezXaYE1m_HAsb0cT_JczNmafrt9m7tAF_5H-l2uSKRN96Hrn20yrTmnXj5forFH7aK9-3zl6fbh_WT7lq_Xj83KxyjUteJ9TjmtBK61rUTfEYM24MATAUsVF0WBTsqZQvNZVDalCOMOcN0yZUuiqqDmdo5spN42TVom93PkhtKmlJAkJAwoVJBWZVDr4GINtZBfcQYVRYpBHgnIiKBM8-UNQsmSikykmcbux4S_6H9c3-VB0Sg</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Zhu, Xuancan</creator><creator>Chen, Chunping</creator><creator>Shi, Yixiang</creator><creator>O’Hare, Dermot</creator><creator>Cai, Ningsheng</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8720-9699</orcidid></search><sort><creationdate>20201001</creationdate><title>Aqueous miscible organic-layered double hydroxides with improved CO2 adsorption capacity</title><author>Zhu, Xuancan ; Chen, Chunping ; Shi, Yixiang ; O’Hare, Dermot ; Cai, Ningsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-361b938ccb9bf2d1c469d200e3a695f1d74f5a6bc8b0a69264166f4ad79c85b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acetone</topic><topic>Adsorbents</topic><topic>Alkali metals</topic><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Commercialization</topic><topic>Engineering Thermodynamics</topic><topic>Ethanol</topic><topic>Heat and Mass Transfer</topic><topic>High temperature</topic><topic>Hydrogen bonding</topic><topic>Hydroxides</topic><topic>Impregnation</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Miscibility</topic><topic>Morphology</topic><topic>Potassium carbonate</topic><topic>Solvents</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Work capacity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Xuancan</creatorcontrib><creatorcontrib>Chen, Chunping</creatorcontrib><creatorcontrib>Shi, Yixiang</creatorcontrib><creatorcontrib>O’Hare, Dermot</creatorcontrib><creatorcontrib>Cai, Ningsheng</creatorcontrib><collection>CrossRef</collection><jtitle>Adsorption : journal of the International Adsorption Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Xuancan</au><au>Chen, Chunping</au><au>Shi, Yixiang</au><au>O’Hare, Dermot</au><au>Cai, Ningsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aqueous miscible organic-layered double hydroxides with improved CO2 adsorption capacity</atitle><jtitle>Adsorption : journal of the International Adsorption Society</jtitle><stitle>Adsorption</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>26</volume><issue>7</issue><spage>1127</spage><epage>1135</epage><pages>1127-1135</pages><issn>0929-5607</issn><eissn>1572-8757</eissn><abstract>Potassium-promoted layered double hydroxide (LDH)-derived materials are suitable elevated temperature CO
2
adsorbents for pre-combustion CO
2
capture. A challenge for the commercialization of LDHs as efficient CO
2
adsorbents is their low capacities (
ca.
0.5–0.6 mmol/g@400 °C) due to their hydrogen-bonded stacked structure. In this study, the aqueous miscible organic solvent treatment (AMOST) was used to exfoliate Mg
3
Al–CO
3
LDH into nanosheets with a flower-like morphology, resulting in high surface areas of 287 and 212 m
2
/g for CC1 (washed with ethanol) and CC2 (washed with acetone), respectively. The exfoliated LDH structure exposed more interlayered CO
2
active sites and promoters for alkali metal modification. Six impregnation solvents, water, acetone, ethanediol, ethanol, DMAC, and methanol were screened to optimize the CO
2
uptake of 20 wt% K
2
CO
3
-promoted CC1. K
2
CO
3
/CC1(ed) using ethanediol as the impregnation solvent reached a CO
2
working capacity of 1.46 mmol/g at 400 °C in the first cycle and 1.23 mmol/g after 10 cycles, twice the capacity of the commercial K
2
CO
3
/MG70. Material characterization indicated that the unexpectedly high performance of K
2
CO
3
/CC1(ed) could be attributed to the uniform K
+
dispersion on the surface of K
2
CO
3
/CC1(ed) rather than bulk phase formation and the release of the residual solvent during calcination that could generate more paths for CO
2
diffusion.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10450-020-00209-4</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8720-9699</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0929-5607 |
ispartof | Adsorption : journal of the International Adsorption Society, 2020-10, Vol.26 (7), p.1127-1135 |
issn | 0929-5607 1572-8757 |
language | eng |
recordid | cdi_proquest_journals_2450403080 |
source | Springer Link |
subjects | Acetone Adsorbents Alkali metals Carbon dioxide Carbon sequestration Chemistry Chemistry and Materials Science Commercialization Engineering Thermodynamics Ethanol Heat and Mass Transfer High temperature Hydrogen bonding Hydroxides Impregnation Industrial Chemistry/Chemical Engineering Miscibility Morphology Potassium carbonate Solvents Surfaces and Interfaces Thin Films Work capacity |
title | Aqueous miscible organic-layered double hydroxides with improved CO2 adsorption capacity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A11%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aqueous%20miscible%20organic-layered%20double%20hydroxides%20with%20improved%20CO2%20adsorption%20capacity&rft.jtitle=Adsorption%20:%20journal%20of%20the%20International%20Adsorption%20Society&rft.au=Zhu,%20Xuancan&rft.date=2020-10-01&rft.volume=26&rft.issue=7&rft.spage=1127&rft.epage=1135&rft.pages=1127-1135&rft.issn=0929-5607&rft.eissn=1572-8757&rft_id=info:doi/10.1007/s10450-020-00209-4&rft_dat=%3Cproquest_cross%3E2450403080%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c356t-361b938ccb9bf2d1c469d200e3a695f1d74f5a6bc8b0a69264166f4ad79c85b63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2450403080&rft_id=info:pmid/&rfr_iscdi=true |