Loading…

Influence of Interfacial Stress on Microstructural Evolution in NiAl Alloys

A phase-field model for the phase transition between austenite and martensite and twinning between two martensitic variants is presented from our previous theory [1] with the main focus on the influence of interfacial stress that is consistent with the sharp interface limit. Each variant-variant tra...

Full description

Saved in:
Bibliographic Details
Published in:JETP letters 2020-08, Vol.112 (3), p.173-179
Main Author: Roy, A. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A phase-field model for the phase transition between austenite and martensite and twinning between two martensitic variants is presented from our previous theory [1] with the main focus on the influence of interfacial stress that is consistent with the sharp interface limit. Each variant-variant transformation can be represented by only one order parameter. Thus, it allows us to get the analytical solution of interface energy and width. Coupled phase-field and elasticity equations are solved for cubic-to-tetragonal phase transformation in NiAl shape memory alloy. The effects of interfacial stress are studied for martensite-martensite interfaces in detail, which was absent in [1]. Additionally, stress and temperature-induced growth of the martensitic phase inside austenite and twining are simulated. Some of the nontrivial experimentally observed microstructures reproduced in the simulations [1] are analyzed in detail. It includes tip splitting and bending, and twins crossing. This theory can be extended for electric, reconstructive, and magnetic phase transformations.
ISSN:0021-3640
1090-6487
DOI:10.1134/S0021364020150023