Loading…

Parameters of a Subthreshold Microwave Discharge in Air and Carbon Dioxide as a Function of Microwave Field at Different Gas Pressures

Propagation velocity of a subthreshold microwave discharge in air and carbon dioxide is measured at various gas pressures and intensities of microwave radiation. At air pressures of 200, 390, and 738 Torr and carbon dioxide pressures of 390 and 750 Torr, the propagation velocity of the head part of...

Full description

Saved in:
Bibliographic Details
Published in:Plasma physics reports 2020-09, Vol.46 (9), p.927-935
Main Authors: Artem’ev, K. V., Batanov, G. M., Berezhetskaya, N. K., Borzosekov, V. D., Davydov, A. M., Kolik, L. V., Konchekov, E. M., Kossyi, I. A., Petrov, A. E., Sarksyan, K. A., Stepakhin, V. D., Kharchev, N. K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-36fd22214693815f38c0c96d5e33979c0a0d242ae51dfafbdb2bd58ddce8dd33
cites cdi_FETCH-LOGICAL-c316t-36fd22214693815f38c0c96d5e33979c0a0d242ae51dfafbdb2bd58ddce8dd33
container_end_page 935
container_issue 9
container_start_page 927
container_title Plasma physics reports
container_volume 46
creator Artem’ev, K. V.
Batanov, G. M.
Berezhetskaya, N. K.
Borzosekov, V. D.
Davydov, A. M.
Kolik, L. V.
Konchekov, E. M.
Kossyi, I. A.
Petrov, A. E.
Sarksyan, K. A.
Stepakhin, V. D.
Kharchev, N. K.
description Propagation velocity of a subthreshold microwave discharge in air and carbon dioxide is measured at various gas pressures and intensities of microwave radiation. At air pressures of 200, 390, and 738 Torr and carbon dioxide pressures of 390 and 750 Torr, the propagation velocity of the head part of the self-non-self-sustained discharge closely follows a quadratic power law as a function of microwave-beam intensity in the range from 4 to 16 kW/cm 2 , while decreasing directly proportional to the initial gas density. In the process, the discharge propagation velocities in carbon dioxide are twice lower that those in air at equal intensities of the microwave radiation. The temperature in the head part of the discharge in air reaches 3.5–5.5 kK, while that in carbon dioxide reaches 9–15 kK.
doi_str_mv 10.1134/S1063780X20090019
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2450420390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450420390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-36fd22214693815f38c0c96d5e33979c0a0d242ae51dfafbdb2bd58ddce8dd33</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqXwAewssQ74kaTJsiq0IBVRqV2wixx73Lpq42InPH6A72aqInWB2IytuefesYeQa85uOZfp3ZyzXA4K9ioYKxnj5Qnp8SwXSV7K4hTvKCd7_ZxcxLhGghcZ75HvmQpqCy2ESL2lis67ul0FiCu_MfTZ6eA_1DvQexf1SoUlUNfQoQtUNYaOVKh9g5r_dAaoiugfd41uHXYx7WgfO8A41SJrLQRoWjpBfIaDYoflkpxZtYlw9Xv2yWL8sBg9JtOXydNoOE205HmbyNwaIQRP97_imZWFZrrMTQZSloNSM8WMSIWCjBurbG1qUZusMEYDFin75OYQuwv-rYPYVmvfhQYnViLNWCqYLBlS_EDh62MMYKtdcFsVvirOqv22qz_bRo84eCKyzRLCMfl_0w-Pf4J7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450420390</pqid></control><display><type>article</type><title>Parameters of a Subthreshold Microwave Discharge in Air and Carbon Dioxide as a Function of Microwave Field at Different Gas Pressures</title><source>Springer Nature</source><creator>Artem’ev, K. V. ; Batanov, G. M. ; Berezhetskaya, N. K. ; Borzosekov, V. D. ; Davydov, A. M. ; Kolik, L. V. ; Konchekov, E. M. ; Kossyi, I. A. ; Petrov, A. E. ; Sarksyan, K. A. ; Stepakhin, V. D. ; Kharchev, N. K.</creator><creatorcontrib>Artem’ev, K. V. ; Batanov, G. M. ; Berezhetskaya, N. K. ; Borzosekov, V. D. ; Davydov, A. M. ; Kolik, L. V. ; Konchekov, E. M. ; Kossyi, I. A. ; Petrov, A. E. ; Sarksyan, K. A. ; Stepakhin, V. D. ; Kharchev, N. K.</creatorcontrib><description>Propagation velocity of a subthreshold microwave discharge in air and carbon dioxide is measured at various gas pressures and intensities of microwave radiation. At air pressures of 200, 390, and 738 Torr and carbon dioxide pressures of 390 and 750 Torr, the propagation velocity of the head part of the self-non-self-sustained discharge closely follows a quadratic power law as a function of microwave-beam intensity in the range from 4 to 16 kW/cm 2 , while decreasing directly proportional to the initial gas density. In the process, the discharge propagation velocities in carbon dioxide are twice lower that those in air at equal intensities of the microwave radiation. The temperature in the head part of the discharge in air reaches 3.5–5.5 kK, while that in carbon dioxide reaches 9–15 kK.</description><identifier>ISSN: 1063-780X</identifier><identifier>EISSN: 1562-6938</identifier><identifier>DOI: 10.1134/S1063780X20090019</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Atomic ; Carbon dioxide ; Gas density ; Interaction of Waves with Plasma ; Microwave discharge ; Molecular ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Propagation ; Propagation velocity</subject><ispartof>Plasma physics reports, 2020-09, Vol.46 (9), p.927-935</ispartof><rights>Pleiades Publishing, Ltd. 2020</rights><rights>Pleiades Publishing, Ltd. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-36fd22214693815f38c0c96d5e33979c0a0d242ae51dfafbdb2bd58ddce8dd33</citedby><cites>FETCH-LOGICAL-c316t-36fd22214693815f38c0c96d5e33979c0a0d242ae51dfafbdb2bd58ddce8dd33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Artem’ev, K. V.</creatorcontrib><creatorcontrib>Batanov, G. M.</creatorcontrib><creatorcontrib>Berezhetskaya, N. K.</creatorcontrib><creatorcontrib>Borzosekov, V. D.</creatorcontrib><creatorcontrib>Davydov, A. M.</creatorcontrib><creatorcontrib>Kolik, L. V.</creatorcontrib><creatorcontrib>Konchekov, E. M.</creatorcontrib><creatorcontrib>Kossyi, I. A.</creatorcontrib><creatorcontrib>Petrov, A. E.</creatorcontrib><creatorcontrib>Sarksyan, K. A.</creatorcontrib><creatorcontrib>Stepakhin, V. D.</creatorcontrib><creatorcontrib>Kharchev, N. K.</creatorcontrib><title>Parameters of a Subthreshold Microwave Discharge in Air and Carbon Dioxide as a Function of Microwave Field at Different Gas Pressures</title><title>Plasma physics reports</title><addtitle>Plasma Phys. Rep</addtitle><description>Propagation velocity of a subthreshold microwave discharge in air and carbon dioxide is measured at various gas pressures and intensities of microwave radiation. At air pressures of 200, 390, and 738 Torr and carbon dioxide pressures of 390 and 750 Torr, the propagation velocity of the head part of the self-non-self-sustained discharge closely follows a quadratic power law as a function of microwave-beam intensity in the range from 4 to 16 kW/cm 2 , while decreasing directly proportional to the initial gas density. In the process, the discharge propagation velocities in carbon dioxide are twice lower that those in air at equal intensities of the microwave radiation. The temperature in the head part of the discharge in air reaches 3.5–5.5 kK, while that in carbon dioxide reaches 9–15 kK.</description><subject>Atomic</subject><subject>Carbon dioxide</subject><subject>Gas density</subject><subject>Interaction of Waves with Plasma</subject><subject>Microwave discharge</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Propagation</subject><subject>Propagation velocity</subject><issn>1063-780X</issn><issn>1562-6938</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqXwAewssQ74kaTJsiq0IBVRqV2wixx73Lpq42InPH6A72aqInWB2IytuefesYeQa85uOZfp3ZyzXA4K9ioYKxnj5Qnp8SwXSV7K4hTvKCd7_ZxcxLhGghcZ75HvmQpqCy2ESL2lis67ul0FiCu_MfTZ6eA_1DvQexf1SoUlUNfQoQtUNYaOVKh9g5r_dAaoiugfd41uHXYx7WgfO8A41SJrLQRoWjpBfIaDYoflkpxZtYlw9Xv2yWL8sBg9JtOXydNoOE205HmbyNwaIQRP97_imZWFZrrMTQZSloNSM8WMSIWCjBurbG1qUZusMEYDFin75OYQuwv-rYPYVmvfhQYnViLNWCqYLBlS_EDh62MMYKtdcFsVvirOqv22qz_bRo84eCKyzRLCMfl_0w-Pf4J7</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Artem’ev, K. V.</creator><creator>Batanov, G. M.</creator><creator>Berezhetskaya, N. K.</creator><creator>Borzosekov, V. D.</creator><creator>Davydov, A. M.</creator><creator>Kolik, L. V.</creator><creator>Konchekov, E. M.</creator><creator>Kossyi, I. A.</creator><creator>Petrov, A. E.</creator><creator>Sarksyan, K. A.</creator><creator>Stepakhin, V. D.</creator><creator>Kharchev, N. K.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200901</creationdate><title>Parameters of a Subthreshold Microwave Discharge in Air and Carbon Dioxide as a Function of Microwave Field at Different Gas Pressures</title><author>Artem’ev, K. V. ; Batanov, G. M. ; Berezhetskaya, N. K. ; Borzosekov, V. D. ; Davydov, A. M. ; Kolik, L. V. ; Konchekov, E. M. ; Kossyi, I. A. ; Petrov, A. E. ; Sarksyan, K. A. ; Stepakhin, V. D. ; Kharchev, N. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-36fd22214693815f38c0c96d5e33979c0a0d242ae51dfafbdb2bd58ddce8dd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Atomic</topic><topic>Carbon dioxide</topic><topic>Gas density</topic><topic>Interaction of Waves with Plasma</topic><topic>Microwave discharge</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Propagation</topic><topic>Propagation velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Artem’ev, K. V.</creatorcontrib><creatorcontrib>Batanov, G. M.</creatorcontrib><creatorcontrib>Berezhetskaya, N. K.</creatorcontrib><creatorcontrib>Borzosekov, V. D.</creatorcontrib><creatorcontrib>Davydov, A. M.</creatorcontrib><creatorcontrib>Kolik, L. V.</creatorcontrib><creatorcontrib>Konchekov, E. M.</creatorcontrib><creatorcontrib>Kossyi, I. A.</creatorcontrib><creatorcontrib>Petrov, A. E.</creatorcontrib><creatorcontrib>Sarksyan, K. A.</creatorcontrib><creatorcontrib>Stepakhin, V. D.</creatorcontrib><creatorcontrib>Kharchev, N. K.</creatorcontrib><collection>CrossRef</collection><jtitle>Plasma physics reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Artem’ev, K. V.</au><au>Batanov, G. M.</au><au>Berezhetskaya, N. K.</au><au>Borzosekov, V. D.</au><au>Davydov, A. M.</au><au>Kolik, L. V.</au><au>Konchekov, E. M.</au><au>Kossyi, I. A.</au><au>Petrov, A. E.</au><au>Sarksyan, K. A.</au><au>Stepakhin, V. D.</au><au>Kharchev, N. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parameters of a Subthreshold Microwave Discharge in Air and Carbon Dioxide as a Function of Microwave Field at Different Gas Pressures</atitle><jtitle>Plasma physics reports</jtitle><stitle>Plasma Phys. Rep</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>46</volume><issue>9</issue><spage>927</spage><epage>935</epage><pages>927-935</pages><issn>1063-780X</issn><eissn>1562-6938</eissn><abstract>Propagation velocity of a subthreshold microwave discharge in air and carbon dioxide is measured at various gas pressures and intensities of microwave radiation. At air pressures of 200, 390, and 738 Torr and carbon dioxide pressures of 390 and 750 Torr, the propagation velocity of the head part of the self-non-self-sustained discharge closely follows a quadratic power law as a function of microwave-beam intensity in the range from 4 to 16 kW/cm 2 , while decreasing directly proportional to the initial gas density. In the process, the discharge propagation velocities in carbon dioxide are twice lower that those in air at equal intensities of the microwave radiation. The temperature in the head part of the discharge in air reaches 3.5–5.5 kK, while that in carbon dioxide reaches 9–15 kK.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063780X20090019</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-780X
ispartof Plasma physics reports, 2020-09, Vol.46 (9), p.927-935
issn 1063-780X
1562-6938
language eng
recordid cdi_proquest_journals_2450420390
source Springer Nature
subjects Atomic
Carbon dioxide
Gas density
Interaction of Waves with Plasma
Microwave discharge
Molecular
Optical and Plasma Physics
Physics
Physics and Astronomy
Propagation
Propagation velocity
title Parameters of a Subthreshold Microwave Discharge in Air and Carbon Dioxide as a Function of Microwave Field at Different Gas Pressures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A13%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parameters%20of%20a%20Subthreshold%20Microwave%20Discharge%20in%20Air%20and%20Carbon%20Dioxide%20as%20a%20Function%20of%20Microwave%20Field%20at%20Different%20Gas%20Pressures&rft.jtitle=Plasma%20physics%20reports&rft.au=Artem%E2%80%99ev,%20K.%20V.&rft.date=2020-09-01&rft.volume=46&rft.issue=9&rft.spage=927&rft.epage=935&rft.pages=927-935&rft.issn=1063-780X&rft.eissn=1562-6938&rft_id=info:doi/10.1134/S1063780X20090019&rft_dat=%3Cproquest_cross%3E2450420390%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-36fd22214693815f38c0c96d5e33979c0a0d242ae51dfafbdb2bd58ddce8dd33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2450420390&rft_id=info:pmid/&rfr_iscdi=true