Loading…
Parameters of a Subthreshold Microwave Discharge in Air and Carbon Dioxide as a Function of Microwave Field at Different Gas Pressures
Propagation velocity of a subthreshold microwave discharge in air and carbon dioxide is measured at various gas pressures and intensities of microwave radiation. At air pressures of 200, 390, and 738 Torr and carbon dioxide pressures of 390 and 750 Torr, the propagation velocity of the head part of...
Saved in:
Published in: | Plasma physics reports 2020-09, Vol.46 (9), p.927-935 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-36fd22214693815f38c0c96d5e33979c0a0d242ae51dfafbdb2bd58ddce8dd33 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-36fd22214693815f38c0c96d5e33979c0a0d242ae51dfafbdb2bd58ddce8dd33 |
container_end_page | 935 |
container_issue | 9 |
container_start_page | 927 |
container_title | Plasma physics reports |
container_volume | 46 |
creator | Artem’ev, K. V. Batanov, G. M. Berezhetskaya, N. K. Borzosekov, V. D. Davydov, A. M. Kolik, L. V. Konchekov, E. M. Kossyi, I. A. Petrov, A. E. Sarksyan, K. A. Stepakhin, V. D. Kharchev, N. K. |
description | Propagation velocity of a subthreshold microwave discharge in air and carbon dioxide is measured at various gas pressures and intensities of microwave radiation. At air pressures of 200, 390, and 738 Torr and carbon dioxide pressures of 390 and 750 Torr, the propagation velocity of the head part of the self-non-self-sustained discharge closely follows a quadratic power law as a function of microwave-beam intensity in the range from 4 to 16 kW/cm
2
, while decreasing directly proportional to the initial gas density. In the process, the discharge propagation velocities in carbon dioxide are twice lower that those in air at equal intensities of the microwave radiation. The temperature in the head part of the discharge in air reaches 3.5–5.5 kK, while that in carbon dioxide reaches 9–15 kK. |
doi_str_mv | 10.1134/S1063780X20090019 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2450420390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450420390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-36fd22214693815f38c0c96d5e33979c0a0d242ae51dfafbdb2bd58ddce8dd33</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqXwAewssQ74kaTJsiq0IBVRqV2wixx73Lpq42InPH6A72aqInWB2IytuefesYeQa85uOZfp3ZyzXA4K9ioYKxnj5Qnp8SwXSV7K4hTvKCd7_ZxcxLhGghcZ75HvmQpqCy2ESL2lis67ul0FiCu_MfTZ6eA_1DvQexf1SoUlUNfQoQtUNYaOVKh9g5r_dAaoiugfd41uHXYx7WgfO8A41SJrLQRoWjpBfIaDYoflkpxZtYlw9Xv2yWL8sBg9JtOXydNoOE205HmbyNwaIQRP97_imZWFZrrMTQZSloNSM8WMSIWCjBurbG1qUZusMEYDFin75OYQuwv-rYPYVmvfhQYnViLNWCqYLBlS_EDh62MMYKtdcFsVvirOqv22qz_bRo84eCKyzRLCMfl_0w-Pf4J7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450420390</pqid></control><display><type>article</type><title>Parameters of a Subthreshold Microwave Discharge in Air and Carbon Dioxide as a Function of Microwave Field at Different Gas Pressures</title><source>Springer Nature</source><creator>Artem’ev, K. V. ; Batanov, G. M. ; Berezhetskaya, N. K. ; Borzosekov, V. D. ; Davydov, A. M. ; Kolik, L. V. ; Konchekov, E. M. ; Kossyi, I. A. ; Petrov, A. E. ; Sarksyan, K. A. ; Stepakhin, V. D. ; Kharchev, N. K.</creator><creatorcontrib>Artem’ev, K. V. ; Batanov, G. M. ; Berezhetskaya, N. K. ; Borzosekov, V. D. ; Davydov, A. M. ; Kolik, L. V. ; Konchekov, E. M. ; Kossyi, I. A. ; Petrov, A. E. ; Sarksyan, K. A. ; Stepakhin, V. D. ; Kharchev, N. K.</creatorcontrib><description>Propagation velocity of a subthreshold microwave discharge in air and carbon dioxide is measured at various gas pressures and intensities of microwave radiation. At air pressures of 200, 390, and 738 Torr and carbon dioxide pressures of 390 and 750 Torr, the propagation velocity of the head part of the self-non-self-sustained discharge closely follows a quadratic power law as a function of microwave-beam intensity in the range from 4 to 16 kW/cm
2
, while decreasing directly proportional to the initial gas density. In the process, the discharge propagation velocities in carbon dioxide are twice lower that those in air at equal intensities of the microwave radiation. The temperature in the head part of the discharge in air reaches 3.5–5.5 kK, while that in carbon dioxide reaches 9–15 kK.</description><identifier>ISSN: 1063-780X</identifier><identifier>EISSN: 1562-6938</identifier><identifier>DOI: 10.1134/S1063780X20090019</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Atomic ; Carbon dioxide ; Gas density ; Interaction of Waves with Plasma ; Microwave discharge ; Molecular ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Propagation ; Propagation velocity</subject><ispartof>Plasma physics reports, 2020-09, Vol.46 (9), p.927-935</ispartof><rights>Pleiades Publishing, Ltd. 2020</rights><rights>Pleiades Publishing, Ltd. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-36fd22214693815f38c0c96d5e33979c0a0d242ae51dfafbdb2bd58ddce8dd33</citedby><cites>FETCH-LOGICAL-c316t-36fd22214693815f38c0c96d5e33979c0a0d242ae51dfafbdb2bd58ddce8dd33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Artem’ev, K. V.</creatorcontrib><creatorcontrib>Batanov, G. M.</creatorcontrib><creatorcontrib>Berezhetskaya, N. K.</creatorcontrib><creatorcontrib>Borzosekov, V. D.</creatorcontrib><creatorcontrib>Davydov, A. M.</creatorcontrib><creatorcontrib>Kolik, L. V.</creatorcontrib><creatorcontrib>Konchekov, E. M.</creatorcontrib><creatorcontrib>Kossyi, I. A.</creatorcontrib><creatorcontrib>Petrov, A. E.</creatorcontrib><creatorcontrib>Sarksyan, K. A.</creatorcontrib><creatorcontrib>Stepakhin, V. D.</creatorcontrib><creatorcontrib>Kharchev, N. K.</creatorcontrib><title>Parameters of a Subthreshold Microwave Discharge in Air and Carbon Dioxide as a Function of Microwave Field at Different Gas Pressures</title><title>Plasma physics reports</title><addtitle>Plasma Phys. Rep</addtitle><description>Propagation velocity of a subthreshold microwave discharge in air and carbon dioxide is measured at various gas pressures and intensities of microwave radiation. At air pressures of 200, 390, and 738 Torr and carbon dioxide pressures of 390 and 750 Torr, the propagation velocity of the head part of the self-non-self-sustained discharge closely follows a quadratic power law as a function of microwave-beam intensity in the range from 4 to 16 kW/cm
2
, while decreasing directly proportional to the initial gas density. In the process, the discharge propagation velocities in carbon dioxide are twice lower that those in air at equal intensities of the microwave radiation. The temperature in the head part of the discharge in air reaches 3.5–5.5 kK, while that in carbon dioxide reaches 9–15 kK.</description><subject>Atomic</subject><subject>Carbon dioxide</subject><subject>Gas density</subject><subject>Interaction of Waves with Plasma</subject><subject>Microwave discharge</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Propagation</subject><subject>Propagation velocity</subject><issn>1063-780X</issn><issn>1562-6938</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqXwAewssQ74kaTJsiq0IBVRqV2wixx73Lpq42InPH6A72aqInWB2IytuefesYeQa85uOZfp3ZyzXA4K9ioYKxnj5Qnp8SwXSV7K4hTvKCd7_ZxcxLhGghcZ75HvmQpqCy2ESL2lis67ul0FiCu_MfTZ6eA_1DvQexf1SoUlUNfQoQtUNYaOVKh9g5r_dAaoiugfd41uHXYx7WgfO8A41SJrLQRoWjpBfIaDYoflkpxZtYlw9Xv2yWL8sBg9JtOXydNoOE205HmbyNwaIQRP97_imZWFZrrMTQZSloNSM8WMSIWCjBurbG1qUZusMEYDFin75OYQuwv-rYPYVmvfhQYnViLNWCqYLBlS_EDh62MMYKtdcFsVvirOqv22qz_bRo84eCKyzRLCMfl_0w-Pf4J7</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Artem’ev, K. V.</creator><creator>Batanov, G. M.</creator><creator>Berezhetskaya, N. K.</creator><creator>Borzosekov, V. D.</creator><creator>Davydov, A. M.</creator><creator>Kolik, L. V.</creator><creator>Konchekov, E. M.</creator><creator>Kossyi, I. A.</creator><creator>Petrov, A. E.</creator><creator>Sarksyan, K. A.</creator><creator>Stepakhin, V. D.</creator><creator>Kharchev, N. K.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200901</creationdate><title>Parameters of a Subthreshold Microwave Discharge in Air and Carbon Dioxide as a Function of Microwave Field at Different Gas Pressures</title><author>Artem’ev, K. V. ; Batanov, G. M. ; Berezhetskaya, N. K. ; Borzosekov, V. D. ; Davydov, A. M. ; Kolik, L. V. ; Konchekov, E. M. ; Kossyi, I. A. ; Petrov, A. E. ; Sarksyan, K. A. ; Stepakhin, V. D. ; Kharchev, N. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-36fd22214693815f38c0c96d5e33979c0a0d242ae51dfafbdb2bd58ddce8dd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Atomic</topic><topic>Carbon dioxide</topic><topic>Gas density</topic><topic>Interaction of Waves with Plasma</topic><topic>Microwave discharge</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Propagation</topic><topic>Propagation velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Artem’ev, K. V.</creatorcontrib><creatorcontrib>Batanov, G. M.</creatorcontrib><creatorcontrib>Berezhetskaya, N. K.</creatorcontrib><creatorcontrib>Borzosekov, V. D.</creatorcontrib><creatorcontrib>Davydov, A. M.</creatorcontrib><creatorcontrib>Kolik, L. V.</creatorcontrib><creatorcontrib>Konchekov, E. M.</creatorcontrib><creatorcontrib>Kossyi, I. A.</creatorcontrib><creatorcontrib>Petrov, A. E.</creatorcontrib><creatorcontrib>Sarksyan, K. A.</creatorcontrib><creatorcontrib>Stepakhin, V. D.</creatorcontrib><creatorcontrib>Kharchev, N. K.</creatorcontrib><collection>CrossRef</collection><jtitle>Plasma physics reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Artem’ev, K. V.</au><au>Batanov, G. M.</au><au>Berezhetskaya, N. K.</au><au>Borzosekov, V. D.</au><au>Davydov, A. M.</au><au>Kolik, L. V.</au><au>Konchekov, E. M.</au><au>Kossyi, I. A.</au><au>Petrov, A. E.</au><au>Sarksyan, K. A.</au><au>Stepakhin, V. D.</au><au>Kharchev, N. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parameters of a Subthreshold Microwave Discharge in Air and Carbon Dioxide as a Function of Microwave Field at Different Gas Pressures</atitle><jtitle>Plasma physics reports</jtitle><stitle>Plasma Phys. Rep</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>46</volume><issue>9</issue><spage>927</spage><epage>935</epage><pages>927-935</pages><issn>1063-780X</issn><eissn>1562-6938</eissn><abstract>Propagation velocity of a subthreshold microwave discharge in air and carbon dioxide is measured at various gas pressures and intensities of microwave radiation. At air pressures of 200, 390, and 738 Torr and carbon dioxide pressures of 390 and 750 Torr, the propagation velocity of the head part of the self-non-self-sustained discharge closely follows a quadratic power law as a function of microwave-beam intensity in the range from 4 to 16 kW/cm
2
, while decreasing directly proportional to the initial gas density. In the process, the discharge propagation velocities in carbon dioxide are twice lower that those in air at equal intensities of the microwave radiation. The temperature in the head part of the discharge in air reaches 3.5–5.5 kK, while that in carbon dioxide reaches 9–15 kK.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063780X20090019</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-780X |
ispartof | Plasma physics reports, 2020-09, Vol.46 (9), p.927-935 |
issn | 1063-780X 1562-6938 |
language | eng |
recordid | cdi_proquest_journals_2450420390 |
source | Springer Nature |
subjects | Atomic Carbon dioxide Gas density Interaction of Waves with Plasma Microwave discharge Molecular Optical and Plasma Physics Physics Physics and Astronomy Propagation Propagation velocity |
title | Parameters of a Subthreshold Microwave Discharge in Air and Carbon Dioxide as a Function of Microwave Field at Different Gas Pressures |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A13%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parameters%20of%20a%20Subthreshold%20Microwave%20Discharge%20in%20Air%20and%20Carbon%20Dioxide%20as%20a%20Function%20of%20Microwave%20Field%20at%20Different%20Gas%20Pressures&rft.jtitle=Plasma%20physics%20reports&rft.au=Artem%E2%80%99ev,%20K.%20V.&rft.date=2020-09-01&rft.volume=46&rft.issue=9&rft.spage=927&rft.epage=935&rft.pages=927-935&rft.issn=1063-780X&rft.eissn=1562-6938&rft_id=info:doi/10.1134/S1063780X20090019&rft_dat=%3Cproquest_cross%3E2450420390%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-36fd22214693815f38c0c96d5e33979c0a0d242ae51dfafbdb2bd58ddce8dd33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2450420390&rft_id=info:pmid/&rfr_iscdi=true |