Loading…

Strong Inland Propagation of Low‐Frequency Long Waves in River Estuaries

Tidal waves traveling into estuaries are modified by channel geometry and river flow. The damping effect of river flow on incident astronomical tides is well documented, whereas its impact on low‐frequency tides like MSf and Mm is poorly understood. In this contribution, we employ a numerical model...

Full description

Saved in:
Bibliographic Details
Published in:Geophysical research letters 2020-10, Vol.47 (19), p.n/a
Main Authors: Guo, Leicheng, Zhu, Chunyan, Wu, Xuefeng, Wan, Yuanyang, Jay, David A., Townend, Ian, Wang, Zheng Bing, He, Qing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3440-3e6a6a23e9defa01e4fe0eeef3cb95ef0aaa639b4c5a449145972710ae1f4c863
cites cdi_FETCH-LOGICAL-c3440-3e6a6a23e9defa01e4fe0eeef3cb95ef0aaa639b4c5a449145972710ae1f4c863
container_end_page n/a
container_issue 19
container_start_page
container_title Geophysical research letters
container_volume 47
creator Guo, Leicheng
Zhu, Chunyan
Wu, Xuefeng
Wan, Yuanyang
Jay, David A.
Townend, Ian
Wang, Zheng Bing
He, Qing
description Tidal waves traveling into estuaries are modified by channel geometry and river flow. The damping effect of river flow on incident astronomical tides is well documented, whereas its impact on low‐frequency tides like MSf and Mm is poorly understood. In this contribution, we employ a numerical model to explore low‐frequency tidal behavior under varying river flow. MSf and Mm are locally generated by frictional mechanisms inside an estuary, and they are larger in amplitude far upstream in tidal rivers and persist landward of the point of tidal extinction. Increasing river flow nonlinearly modulates the longitudinal variations of MSf and Mm amplitudes. This is dynamically explained by flow‐enhanced asymmetry in subtidal friction over the spring‐neap (MSf) and perigee‐apogee (Mm) cycles, respectively. Estuaries act as frequency filters, where low‐frequency waves decay at a smaller rate and propagate more inland than high‐frequency waves. Strong inland penetration of low‐frequency tides informs compound flood management. Key Points High river flow stimulates local generation of significant low‐frequency tides particularly in upstream tidal river part of estuaries Varying river flows nonlinearly modulate longitudinal variations of MSf amplitude by enhancing fortnightly asymmetry in subtidal friction Strong inland penetration of low‐frequency tidal waves and surges beyond the limit of incident waves informs management of compound flood
doi_str_mv 10.1029/2020GL089112
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2450665894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450665894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3440-3e6a6a23e9defa01e4fe0eeef3cb95ef0aaa639b4c5a449145972710ae1f4c863</originalsourceid><addsrcrecordid>eNp90M1Kw0AQB_BFFKzVmw8Q8Gp09iOb7FFKrZWAUhWPYZrOlpSarbtpS28-gs_ok7hSD548zQz8mBn-jJ1zuOIgzLUAAaMSCsO5OGA9bpRKC4D8kPUATOxFro_ZSQgLAJAgeY_dP3XetfNk3C6xnSWP3q1wjl3j2sTZpHTbr4_PW0_va2rrXZwjfcUNhaRpk0mzIZ8MQ7dG31A4ZUcWl4HOfmufvdwOnwd3afkwGg9uyrSWSkEqSaNGIcnMyCJwUpaAiKyspyYjC4iopZmqOkOlDFeZyUXOAYlbVRda9tnFfu_Ku_hX6KqFW_s2nqyEykDrrDAqqsu9qr0LwZOtVr55Q7-rOFQ_aVV_04pc7Pm2WdLuX1uNJqXmMib4Df9Ka5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450665894</pqid></control><display><type>article</type><title>Strong Inland Propagation of Low‐Frequency Long Waves in River Estuaries</title><source>Wiley-Blackwell AGU Digital Archive</source><creator>Guo, Leicheng ; Zhu, Chunyan ; Wu, Xuefeng ; Wan, Yuanyang ; Jay, David A. ; Townend, Ian ; Wang, Zheng Bing ; He, Qing</creator><creatorcontrib>Guo, Leicheng ; Zhu, Chunyan ; Wu, Xuefeng ; Wan, Yuanyang ; Jay, David A. ; Townend, Ian ; Wang, Zheng Bing ; He, Qing</creatorcontrib><description>Tidal waves traveling into estuaries are modified by channel geometry and river flow. The damping effect of river flow on incident astronomical tides is well documented, whereas its impact on low‐frequency tides like MSf and Mm is poorly understood. In this contribution, we employ a numerical model to explore low‐frequency tidal behavior under varying river flow. MSf and Mm are locally generated by frictional mechanisms inside an estuary, and they are larger in amplitude far upstream in tidal rivers and persist landward of the point of tidal extinction. Increasing river flow nonlinearly modulates the longitudinal variations of MSf and Mm amplitudes. This is dynamically explained by flow‐enhanced asymmetry in subtidal friction over the spring‐neap (MSf) and perigee‐apogee (Mm) cycles, respectively. Estuaries act as frequency filters, where low‐frequency waves decay at a smaller rate and propagate more inland than high‐frequency waves. Strong inland penetration of low‐frequency tides informs compound flood management. Key Points High river flow stimulates local generation of significant low‐frequency tides particularly in upstream tidal river part of estuaries Varying river flows nonlinearly modulate longitudinal variations of MSf amplitude by enhancing fortnightly asymmetry in subtidal friction Strong inland penetration of low‐frequency tidal waves and surges beyond the limit of incident waves informs management of compound flood</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2020GL089112</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Amplitudes ; Astronomical tides ; Damping ; Decay rate ; Electromagnetic wave filters ; Estuaries ; Estuarine dynamics ; Flood control ; Flood management ; Frequency filters ; Long waves ; low‐frequency ; Mathematical models ; MSf ; Numerical models ; River channels ; river discharge ; River flow ; Rivers ; Stream flow ; subtidal friction ; Tidal rivers ; Tidal waterways ; Tidal waves ; Tides ; Wave propagation</subject><ispartof>Geophysical research letters, 2020-10, Vol.47 (19), p.n/a</ispartof><rights>2020. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3440-3e6a6a23e9defa01e4fe0eeef3cb95ef0aaa639b4c5a449145972710ae1f4c863</citedby><cites>FETCH-LOGICAL-c3440-3e6a6a23e9defa01e4fe0eeef3cb95ef0aaa639b4c5a449145972710ae1f4c863</cites><orcidid>0000-0002-6196-4167 ; 0000-0002-1261-2536 ; 0000-0003-0735-9895 ; 0000-0003-2101-3858 ; 0000-0002-9282-4968 ; 0000-0002-8787-4530</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2020GL089112$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2020GL089112$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11512,27922,27923,46466,46890</link.rule.ids></links><search><creatorcontrib>Guo, Leicheng</creatorcontrib><creatorcontrib>Zhu, Chunyan</creatorcontrib><creatorcontrib>Wu, Xuefeng</creatorcontrib><creatorcontrib>Wan, Yuanyang</creatorcontrib><creatorcontrib>Jay, David A.</creatorcontrib><creatorcontrib>Townend, Ian</creatorcontrib><creatorcontrib>Wang, Zheng Bing</creatorcontrib><creatorcontrib>He, Qing</creatorcontrib><title>Strong Inland Propagation of Low‐Frequency Long Waves in River Estuaries</title><title>Geophysical research letters</title><description>Tidal waves traveling into estuaries are modified by channel geometry and river flow. The damping effect of river flow on incident astronomical tides is well documented, whereas its impact on low‐frequency tides like MSf and Mm is poorly understood. In this contribution, we employ a numerical model to explore low‐frequency tidal behavior under varying river flow. MSf and Mm are locally generated by frictional mechanisms inside an estuary, and they are larger in amplitude far upstream in tidal rivers and persist landward of the point of tidal extinction. Increasing river flow nonlinearly modulates the longitudinal variations of MSf and Mm amplitudes. This is dynamically explained by flow‐enhanced asymmetry in subtidal friction over the spring‐neap (MSf) and perigee‐apogee (Mm) cycles, respectively. Estuaries act as frequency filters, where low‐frequency waves decay at a smaller rate and propagate more inland than high‐frequency waves. Strong inland penetration of low‐frequency tides informs compound flood management. Key Points High river flow stimulates local generation of significant low‐frequency tides particularly in upstream tidal river part of estuaries Varying river flows nonlinearly modulate longitudinal variations of MSf amplitude by enhancing fortnightly asymmetry in subtidal friction Strong inland penetration of low‐frequency tidal waves and surges beyond the limit of incident waves informs management of compound flood</description><subject>Amplitudes</subject><subject>Astronomical tides</subject><subject>Damping</subject><subject>Decay rate</subject><subject>Electromagnetic wave filters</subject><subject>Estuaries</subject><subject>Estuarine dynamics</subject><subject>Flood control</subject><subject>Flood management</subject><subject>Frequency filters</subject><subject>Long waves</subject><subject>low‐frequency</subject><subject>Mathematical models</subject><subject>MSf</subject><subject>Numerical models</subject><subject>River channels</subject><subject>river discharge</subject><subject>River flow</subject><subject>Rivers</subject><subject>Stream flow</subject><subject>subtidal friction</subject><subject>Tidal rivers</subject><subject>Tidal waterways</subject><subject>Tidal waves</subject><subject>Tides</subject><subject>Wave propagation</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90M1Kw0AQB_BFFKzVmw8Q8Gp09iOb7FFKrZWAUhWPYZrOlpSarbtpS28-gs_ok7hSD548zQz8mBn-jJ1zuOIgzLUAAaMSCsO5OGA9bpRKC4D8kPUATOxFro_ZSQgLAJAgeY_dP3XetfNk3C6xnSWP3q1wjl3j2sTZpHTbr4_PW0_va2rrXZwjfcUNhaRpk0mzIZ8MQ7dG31A4ZUcWl4HOfmufvdwOnwd3afkwGg9uyrSWSkEqSaNGIcnMyCJwUpaAiKyspyYjC4iopZmqOkOlDFeZyUXOAYlbVRda9tnFfu_Ku_hX6KqFW_s2nqyEykDrrDAqqsu9qr0LwZOtVr55Q7-rOFQ_aVV_04pc7Pm2WdLuX1uNJqXmMib4Df9Ka5A</recordid><startdate>20201016</startdate><enddate>20201016</enddate><creator>Guo, Leicheng</creator><creator>Zhu, Chunyan</creator><creator>Wu, Xuefeng</creator><creator>Wan, Yuanyang</creator><creator>Jay, David A.</creator><creator>Townend, Ian</creator><creator>Wang, Zheng Bing</creator><creator>He, Qing</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6196-4167</orcidid><orcidid>https://orcid.org/0000-0002-1261-2536</orcidid><orcidid>https://orcid.org/0000-0003-0735-9895</orcidid><orcidid>https://orcid.org/0000-0003-2101-3858</orcidid><orcidid>https://orcid.org/0000-0002-9282-4968</orcidid><orcidid>https://orcid.org/0000-0002-8787-4530</orcidid></search><sort><creationdate>20201016</creationdate><title>Strong Inland Propagation of Low‐Frequency Long Waves in River Estuaries</title><author>Guo, Leicheng ; Zhu, Chunyan ; Wu, Xuefeng ; Wan, Yuanyang ; Jay, David A. ; Townend, Ian ; Wang, Zheng Bing ; He, Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3440-3e6a6a23e9defa01e4fe0eeef3cb95ef0aaa639b4c5a449145972710ae1f4c863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amplitudes</topic><topic>Astronomical tides</topic><topic>Damping</topic><topic>Decay rate</topic><topic>Electromagnetic wave filters</topic><topic>Estuaries</topic><topic>Estuarine dynamics</topic><topic>Flood control</topic><topic>Flood management</topic><topic>Frequency filters</topic><topic>Long waves</topic><topic>low‐frequency</topic><topic>Mathematical models</topic><topic>MSf</topic><topic>Numerical models</topic><topic>River channels</topic><topic>river discharge</topic><topic>River flow</topic><topic>Rivers</topic><topic>Stream flow</topic><topic>subtidal friction</topic><topic>Tidal rivers</topic><topic>Tidal waterways</topic><topic>Tidal waves</topic><topic>Tides</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Leicheng</creatorcontrib><creatorcontrib>Zhu, Chunyan</creatorcontrib><creatorcontrib>Wu, Xuefeng</creatorcontrib><creatorcontrib>Wan, Yuanyang</creatorcontrib><creatorcontrib>Jay, David A.</creatorcontrib><creatorcontrib>Townend, Ian</creatorcontrib><creatorcontrib>Wang, Zheng Bing</creatorcontrib><creatorcontrib>He, Qing</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Leicheng</au><au>Zhu, Chunyan</au><au>Wu, Xuefeng</au><au>Wan, Yuanyang</au><au>Jay, David A.</au><au>Townend, Ian</au><au>Wang, Zheng Bing</au><au>He, Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong Inland Propagation of Low‐Frequency Long Waves in River Estuaries</atitle><jtitle>Geophysical research letters</jtitle><date>2020-10-16</date><risdate>2020</risdate><volume>47</volume><issue>19</issue><epage>n/a</epage><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>Tidal waves traveling into estuaries are modified by channel geometry and river flow. The damping effect of river flow on incident astronomical tides is well documented, whereas its impact on low‐frequency tides like MSf and Mm is poorly understood. In this contribution, we employ a numerical model to explore low‐frequency tidal behavior under varying river flow. MSf and Mm are locally generated by frictional mechanisms inside an estuary, and they are larger in amplitude far upstream in tidal rivers and persist landward of the point of tidal extinction. Increasing river flow nonlinearly modulates the longitudinal variations of MSf and Mm amplitudes. This is dynamically explained by flow‐enhanced asymmetry in subtidal friction over the spring‐neap (MSf) and perigee‐apogee (Mm) cycles, respectively. Estuaries act as frequency filters, where low‐frequency waves decay at a smaller rate and propagate more inland than high‐frequency waves. Strong inland penetration of low‐frequency tides informs compound flood management. Key Points High river flow stimulates local generation of significant low‐frequency tides particularly in upstream tidal river part of estuaries Varying river flows nonlinearly modulate longitudinal variations of MSf amplitude by enhancing fortnightly asymmetry in subtidal friction Strong inland penetration of low‐frequency tidal waves and surges beyond the limit of incident waves informs management of compound flood</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1029/2020GL089112</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6196-4167</orcidid><orcidid>https://orcid.org/0000-0002-1261-2536</orcidid><orcidid>https://orcid.org/0000-0003-0735-9895</orcidid><orcidid>https://orcid.org/0000-0003-2101-3858</orcidid><orcidid>https://orcid.org/0000-0002-9282-4968</orcidid><orcidid>https://orcid.org/0000-0002-8787-4530</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2020-10, Vol.47 (19), p.n/a
issn 0094-8276
1944-8007
language eng
recordid cdi_proquest_journals_2450665894
source Wiley-Blackwell AGU Digital Archive
subjects Amplitudes
Astronomical tides
Damping
Decay rate
Electromagnetic wave filters
Estuaries
Estuarine dynamics
Flood control
Flood management
Frequency filters
Long waves
low‐frequency
Mathematical models
MSf
Numerical models
River channels
river discharge
River flow
Rivers
Stream flow
subtidal friction
Tidal rivers
Tidal waterways
Tidal waves
Tides
Wave propagation
title Strong Inland Propagation of Low‐Frequency Long Waves in River Estuaries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A50%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20Inland%20Propagation%20of%20Low%E2%80%90Frequency%20Long%20Waves%20in%20River%20Estuaries&rft.jtitle=Geophysical%20research%20letters&rft.au=Guo,%20Leicheng&rft.date=2020-10-16&rft.volume=47&rft.issue=19&rft.epage=n/a&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1029/2020GL089112&rft_dat=%3Cproquest_cross%3E2450665894%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3440-3e6a6a23e9defa01e4fe0eeef3cb95ef0aaa639b4c5a449145972710ae1f4c863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2450665894&rft_id=info:pmid/&rfr_iscdi=true