Loading…
Strong Inland Propagation of Low‐Frequency Long Waves in River Estuaries
Tidal waves traveling into estuaries are modified by channel geometry and river flow. The damping effect of river flow on incident astronomical tides is well documented, whereas its impact on low‐frequency tides like MSf and Mm is poorly understood. In this contribution, we employ a numerical model...
Saved in:
Published in: | Geophysical research letters 2020-10, Vol.47 (19), p.n/a |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3440-3e6a6a23e9defa01e4fe0eeef3cb95ef0aaa639b4c5a449145972710ae1f4c863 |
---|---|
cites | cdi_FETCH-LOGICAL-c3440-3e6a6a23e9defa01e4fe0eeef3cb95ef0aaa639b4c5a449145972710ae1f4c863 |
container_end_page | n/a |
container_issue | 19 |
container_start_page | |
container_title | Geophysical research letters |
container_volume | 47 |
creator | Guo, Leicheng Zhu, Chunyan Wu, Xuefeng Wan, Yuanyang Jay, David A. Townend, Ian Wang, Zheng Bing He, Qing |
description | Tidal waves traveling into estuaries are modified by channel geometry and river flow. The damping effect of river flow on incident astronomical tides is well documented, whereas its impact on low‐frequency tides like MSf and Mm is poorly understood. In this contribution, we employ a numerical model to explore low‐frequency tidal behavior under varying river flow. MSf and Mm are locally generated by frictional mechanisms inside an estuary, and they are larger in amplitude far upstream in tidal rivers and persist landward of the point of tidal extinction. Increasing river flow nonlinearly modulates the longitudinal variations of MSf and Mm amplitudes. This is dynamically explained by flow‐enhanced asymmetry in subtidal friction over the spring‐neap (MSf) and perigee‐apogee (Mm) cycles, respectively. Estuaries act as frequency filters, where low‐frequency waves decay at a smaller rate and propagate more inland than high‐frequency waves. Strong inland penetration of low‐frequency tides informs compound flood management.
Key Points
High river flow stimulates local generation of significant low‐frequency tides particularly in upstream tidal river part of estuaries
Varying river flows nonlinearly modulate longitudinal variations of MSf amplitude by enhancing fortnightly asymmetry in subtidal friction
Strong inland penetration of low‐frequency tidal waves and surges beyond the limit of incident waves informs management of compound flood |
doi_str_mv | 10.1029/2020GL089112 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2450665894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450665894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3440-3e6a6a23e9defa01e4fe0eeef3cb95ef0aaa639b4c5a449145972710ae1f4c863</originalsourceid><addsrcrecordid>eNp90M1Kw0AQB_BFFKzVmw8Q8Gp09iOb7FFKrZWAUhWPYZrOlpSarbtpS28-gs_ok7hSD548zQz8mBn-jJ1zuOIgzLUAAaMSCsO5OGA9bpRKC4D8kPUATOxFro_ZSQgLAJAgeY_dP3XetfNk3C6xnSWP3q1wjl3j2sTZpHTbr4_PW0_va2rrXZwjfcUNhaRpk0mzIZ8MQ7dG31A4ZUcWl4HOfmufvdwOnwd3afkwGg9uyrSWSkEqSaNGIcnMyCJwUpaAiKyspyYjC4iopZmqOkOlDFeZyUXOAYlbVRda9tnFfu_Ku_hX6KqFW_s2nqyEykDrrDAqqsu9qr0LwZOtVr55Q7-rOFQ_aVV_04pc7Pm2WdLuX1uNJqXmMib4Df9Ka5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450665894</pqid></control><display><type>article</type><title>Strong Inland Propagation of Low‐Frequency Long Waves in River Estuaries</title><source>Wiley-Blackwell AGU Digital Archive</source><creator>Guo, Leicheng ; Zhu, Chunyan ; Wu, Xuefeng ; Wan, Yuanyang ; Jay, David A. ; Townend, Ian ; Wang, Zheng Bing ; He, Qing</creator><creatorcontrib>Guo, Leicheng ; Zhu, Chunyan ; Wu, Xuefeng ; Wan, Yuanyang ; Jay, David A. ; Townend, Ian ; Wang, Zheng Bing ; He, Qing</creatorcontrib><description>Tidal waves traveling into estuaries are modified by channel geometry and river flow. The damping effect of river flow on incident astronomical tides is well documented, whereas its impact on low‐frequency tides like MSf and Mm is poorly understood. In this contribution, we employ a numerical model to explore low‐frequency tidal behavior under varying river flow. MSf and Mm are locally generated by frictional mechanisms inside an estuary, and they are larger in amplitude far upstream in tidal rivers and persist landward of the point of tidal extinction. Increasing river flow nonlinearly modulates the longitudinal variations of MSf and Mm amplitudes. This is dynamically explained by flow‐enhanced asymmetry in subtidal friction over the spring‐neap (MSf) and perigee‐apogee (Mm) cycles, respectively. Estuaries act as frequency filters, where low‐frequency waves decay at a smaller rate and propagate more inland than high‐frequency waves. Strong inland penetration of low‐frequency tides informs compound flood management.
Key Points
High river flow stimulates local generation of significant low‐frequency tides particularly in upstream tidal river part of estuaries
Varying river flows nonlinearly modulate longitudinal variations of MSf amplitude by enhancing fortnightly asymmetry in subtidal friction
Strong inland penetration of low‐frequency tidal waves and surges beyond the limit of incident waves informs management of compound flood</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2020GL089112</identifier><language>eng</language><publisher>Washington: John Wiley & Sons, Inc</publisher><subject>Amplitudes ; Astronomical tides ; Damping ; Decay rate ; Electromagnetic wave filters ; Estuaries ; Estuarine dynamics ; Flood control ; Flood management ; Frequency filters ; Long waves ; low‐frequency ; Mathematical models ; MSf ; Numerical models ; River channels ; river discharge ; River flow ; Rivers ; Stream flow ; subtidal friction ; Tidal rivers ; Tidal waterways ; Tidal waves ; Tides ; Wave propagation</subject><ispartof>Geophysical research letters, 2020-10, Vol.47 (19), p.n/a</ispartof><rights>2020. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3440-3e6a6a23e9defa01e4fe0eeef3cb95ef0aaa639b4c5a449145972710ae1f4c863</citedby><cites>FETCH-LOGICAL-c3440-3e6a6a23e9defa01e4fe0eeef3cb95ef0aaa639b4c5a449145972710ae1f4c863</cites><orcidid>0000-0002-6196-4167 ; 0000-0002-1261-2536 ; 0000-0003-0735-9895 ; 0000-0003-2101-3858 ; 0000-0002-9282-4968 ; 0000-0002-8787-4530</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2020GL089112$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2020GL089112$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11512,27922,27923,46466,46890</link.rule.ids></links><search><creatorcontrib>Guo, Leicheng</creatorcontrib><creatorcontrib>Zhu, Chunyan</creatorcontrib><creatorcontrib>Wu, Xuefeng</creatorcontrib><creatorcontrib>Wan, Yuanyang</creatorcontrib><creatorcontrib>Jay, David A.</creatorcontrib><creatorcontrib>Townend, Ian</creatorcontrib><creatorcontrib>Wang, Zheng Bing</creatorcontrib><creatorcontrib>He, Qing</creatorcontrib><title>Strong Inland Propagation of Low‐Frequency Long Waves in River Estuaries</title><title>Geophysical research letters</title><description>Tidal waves traveling into estuaries are modified by channel geometry and river flow. The damping effect of river flow on incident astronomical tides is well documented, whereas its impact on low‐frequency tides like MSf and Mm is poorly understood. In this contribution, we employ a numerical model to explore low‐frequency tidal behavior under varying river flow. MSf and Mm are locally generated by frictional mechanisms inside an estuary, and they are larger in amplitude far upstream in tidal rivers and persist landward of the point of tidal extinction. Increasing river flow nonlinearly modulates the longitudinal variations of MSf and Mm amplitudes. This is dynamically explained by flow‐enhanced asymmetry in subtidal friction over the spring‐neap (MSf) and perigee‐apogee (Mm) cycles, respectively. Estuaries act as frequency filters, where low‐frequency waves decay at a smaller rate and propagate more inland than high‐frequency waves. Strong inland penetration of low‐frequency tides informs compound flood management.
Key Points
High river flow stimulates local generation of significant low‐frequency tides particularly in upstream tidal river part of estuaries
Varying river flows nonlinearly modulate longitudinal variations of MSf amplitude by enhancing fortnightly asymmetry in subtidal friction
Strong inland penetration of low‐frequency tidal waves and surges beyond the limit of incident waves informs management of compound flood</description><subject>Amplitudes</subject><subject>Astronomical tides</subject><subject>Damping</subject><subject>Decay rate</subject><subject>Electromagnetic wave filters</subject><subject>Estuaries</subject><subject>Estuarine dynamics</subject><subject>Flood control</subject><subject>Flood management</subject><subject>Frequency filters</subject><subject>Long waves</subject><subject>low‐frequency</subject><subject>Mathematical models</subject><subject>MSf</subject><subject>Numerical models</subject><subject>River channels</subject><subject>river discharge</subject><subject>River flow</subject><subject>Rivers</subject><subject>Stream flow</subject><subject>subtidal friction</subject><subject>Tidal rivers</subject><subject>Tidal waterways</subject><subject>Tidal waves</subject><subject>Tides</subject><subject>Wave propagation</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90M1Kw0AQB_BFFKzVmw8Q8Gp09iOb7FFKrZWAUhWPYZrOlpSarbtpS28-gs_ok7hSD548zQz8mBn-jJ1zuOIgzLUAAaMSCsO5OGA9bpRKC4D8kPUATOxFro_ZSQgLAJAgeY_dP3XetfNk3C6xnSWP3q1wjl3j2sTZpHTbr4_PW0_va2rrXZwjfcUNhaRpk0mzIZ8MQ7dG31A4ZUcWl4HOfmufvdwOnwd3afkwGg9uyrSWSkEqSaNGIcnMyCJwUpaAiKyspyYjC4iopZmqOkOlDFeZyUXOAYlbVRda9tnFfu_Ku_hX6KqFW_s2nqyEykDrrDAqqsu9qr0LwZOtVr55Q7-rOFQ_aVV_04pc7Pm2WdLuX1uNJqXmMib4Df9Ka5A</recordid><startdate>20201016</startdate><enddate>20201016</enddate><creator>Guo, Leicheng</creator><creator>Zhu, Chunyan</creator><creator>Wu, Xuefeng</creator><creator>Wan, Yuanyang</creator><creator>Jay, David A.</creator><creator>Townend, Ian</creator><creator>Wang, Zheng Bing</creator><creator>He, Qing</creator><general>John Wiley & Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6196-4167</orcidid><orcidid>https://orcid.org/0000-0002-1261-2536</orcidid><orcidid>https://orcid.org/0000-0003-0735-9895</orcidid><orcidid>https://orcid.org/0000-0003-2101-3858</orcidid><orcidid>https://orcid.org/0000-0002-9282-4968</orcidid><orcidid>https://orcid.org/0000-0002-8787-4530</orcidid></search><sort><creationdate>20201016</creationdate><title>Strong Inland Propagation of Low‐Frequency Long Waves in River Estuaries</title><author>Guo, Leicheng ; Zhu, Chunyan ; Wu, Xuefeng ; Wan, Yuanyang ; Jay, David A. ; Townend, Ian ; Wang, Zheng Bing ; He, Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3440-3e6a6a23e9defa01e4fe0eeef3cb95ef0aaa639b4c5a449145972710ae1f4c863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amplitudes</topic><topic>Astronomical tides</topic><topic>Damping</topic><topic>Decay rate</topic><topic>Electromagnetic wave filters</topic><topic>Estuaries</topic><topic>Estuarine dynamics</topic><topic>Flood control</topic><topic>Flood management</topic><topic>Frequency filters</topic><topic>Long waves</topic><topic>low‐frequency</topic><topic>Mathematical models</topic><topic>MSf</topic><topic>Numerical models</topic><topic>River channels</topic><topic>river discharge</topic><topic>River flow</topic><topic>Rivers</topic><topic>Stream flow</topic><topic>subtidal friction</topic><topic>Tidal rivers</topic><topic>Tidal waterways</topic><topic>Tidal waves</topic><topic>Tides</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Leicheng</creatorcontrib><creatorcontrib>Zhu, Chunyan</creatorcontrib><creatorcontrib>Wu, Xuefeng</creatorcontrib><creatorcontrib>Wan, Yuanyang</creatorcontrib><creatorcontrib>Jay, David A.</creatorcontrib><creatorcontrib>Townend, Ian</creatorcontrib><creatorcontrib>Wang, Zheng Bing</creatorcontrib><creatorcontrib>He, Qing</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Leicheng</au><au>Zhu, Chunyan</au><au>Wu, Xuefeng</au><au>Wan, Yuanyang</au><au>Jay, David A.</au><au>Townend, Ian</au><au>Wang, Zheng Bing</au><au>He, Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong Inland Propagation of Low‐Frequency Long Waves in River Estuaries</atitle><jtitle>Geophysical research letters</jtitle><date>2020-10-16</date><risdate>2020</risdate><volume>47</volume><issue>19</issue><epage>n/a</epage><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>Tidal waves traveling into estuaries are modified by channel geometry and river flow. The damping effect of river flow on incident astronomical tides is well documented, whereas its impact on low‐frequency tides like MSf and Mm is poorly understood. In this contribution, we employ a numerical model to explore low‐frequency tidal behavior under varying river flow. MSf and Mm are locally generated by frictional mechanisms inside an estuary, and they are larger in amplitude far upstream in tidal rivers and persist landward of the point of tidal extinction. Increasing river flow nonlinearly modulates the longitudinal variations of MSf and Mm amplitudes. This is dynamically explained by flow‐enhanced asymmetry in subtidal friction over the spring‐neap (MSf) and perigee‐apogee (Mm) cycles, respectively. Estuaries act as frequency filters, where low‐frequency waves decay at a smaller rate and propagate more inland than high‐frequency waves. Strong inland penetration of low‐frequency tides informs compound flood management.
Key Points
High river flow stimulates local generation of significant low‐frequency tides particularly in upstream tidal river part of estuaries
Varying river flows nonlinearly modulate longitudinal variations of MSf amplitude by enhancing fortnightly asymmetry in subtidal friction
Strong inland penetration of low‐frequency tidal waves and surges beyond the limit of incident waves informs management of compound flood</abstract><cop>Washington</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1029/2020GL089112</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6196-4167</orcidid><orcidid>https://orcid.org/0000-0002-1261-2536</orcidid><orcidid>https://orcid.org/0000-0003-0735-9895</orcidid><orcidid>https://orcid.org/0000-0003-2101-3858</orcidid><orcidid>https://orcid.org/0000-0002-9282-4968</orcidid><orcidid>https://orcid.org/0000-0002-8787-4530</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-8276 |
ispartof | Geophysical research letters, 2020-10, Vol.47 (19), p.n/a |
issn | 0094-8276 1944-8007 |
language | eng |
recordid | cdi_proquest_journals_2450665894 |
source | Wiley-Blackwell AGU Digital Archive |
subjects | Amplitudes Astronomical tides Damping Decay rate Electromagnetic wave filters Estuaries Estuarine dynamics Flood control Flood management Frequency filters Long waves low‐frequency Mathematical models MSf Numerical models River channels river discharge River flow Rivers Stream flow subtidal friction Tidal rivers Tidal waterways Tidal waves Tides Wave propagation |
title | Strong Inland Propagation of Low‐Frequency Long Waves in River Estuaries |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A50%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20Inland%20Propagation%20of%20Low%E2%80%90Frequency%20Long%20Waves%20in%20River%20Estuaries&rft.jtitle=Geophysical%20research%20letters&rft.au=Guo,%20Leicheng&rft.date=2020-10-16&rft.volume=47&rft.issue=19&rft.epage=n/a&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1029/2020GL089112&rft_dat=%3Cproquest_cross%3E2450665894%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3440-3e6a6a23e9defa01e4fe0eeef3cb95ef0aaa639b4c5a449145972710ae1f4c863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2450665894&rft_id=info:pmid/&rfr_iscdi=true |