Loading…
Adjoint difference equation for the Nikiforov–Uvarov–Suslov difference equation of hypergeometric type on non-uniform lattices
In this article, we obtain the adjoint difference equation for the Nikiforov–Uvarov–Suslov difference equation of hypergeometric type on non-uniform lattices, and prove it to be a difference equation of hypergeometric type on non-uniform lattices as well. The particular solutions of the adjoint diff...
Saved in:
Published in: | The Ramanujan journal 2020-11, Vol.53 (2), p.285-318 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c270t-ff7e813404270a4fa415829c13572e210dcc6e75687c73eee75aac0477a315833 |
container_end_page | 318 |
container_issue | 2 |
container_start_page | 285 |
container_title | The Ramanujan journal |
container_volume | 53 |
creator | Cheng, Jinfa Dai, Weizhong |
description | In this article, we obtain the adjoint difference equation for the Nikiforov–Uvarov–Suslov difference equation of hypergeometric type on non-uniform lattices, and prove it to be a difference equation of hypergeometric type on non-uniform lattices as well. The particular solutions of the adjoint difference equation are then obtained. As an application of these particular solutions, we use them to obtain the particular solutions for the original difference equation of hypergeometric type on non-uniform lattices. In addition, we give another kind of fundamental theorems for the Nikiforov–Uvarov–Suslov difference equation of hypergeometric type, which are essentially new results and their expressions are different from the Suslov Theorem. Finally, we give an example to illustrate the application of the new fundamental theorems. |
doi_str_mv | 10.1007/s11139-020-00298-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2450782218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450782218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-ff7e813404270a4fa415829c13572e210dcc6e75687c73eee75aac0477a315833</originalsourceid><addsrcrecordid>eNp9UE1LAzEUDKJgrf4BTwHP0Zdk2-weS_ELih605xDSl3Zru2mTbMGb-Bf8h_4SU1fwIp7eDG9mHm8IOedwyQHUVeScy4qBAAYgqpLJA9LjAyVYJUEeZixLwQqo4JicxLgEgAKk6pH30Wzp6ybRWe0cBmwsUty2JtW-oc4HmhZIH-qXOmO_-3z7mO5MB57auPK7P33e0cXrBsMc_RpTqC1NmdK8aXzD2mYftqYrk1JtMZ6SI2dWEc9-Zp9Mb66fx3ds8nh7Px5NmBUKEnNOYcllAUWmpnCm4INSVJbL_CYKDjNrh6gGw1JZJREzNMZCoZSRWSlln1x0uZvgty3GpJe-DU0-qUUxAFUKwcusEp3KBh9jQKc3oV6b8Ko56H3Xuuta5671d9d6Hy07U8ziZo7hN_of1xe3woXs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450782218</pqid></control><display><type>article</type><title>Adjoint difference equation for the Nikiforov–Uvarov–Suslov difference equation of hypergeometric type on non-uniform lattices</title><source>Springer Nature</source><creator>Cheng, Jinfa ; Dai, Weizhong</creator><creatorcontrib>Cheng, Jinfa ; Dai, Weizhong</creatorcontrib><description>In this article, we obtain the adjoint difference equation for the Nikiforov–Uvarov–Suslov difference equation of hypergeometric type on non-uniform lattices, and prove it to be a difference equation of hypergeometric type on non-uniform lattices as well. The particular solutions of the adjoint difference equation are then obtained. As an application of these particular solutions, we use them to obtain the particular solutions for the original difference equation of hypergeometric type on non-uniform lattices. In addition, we give another kind of fundamental theorems for the Nikiforov–Uvarov–Suslov difference equation of hypergeometric type, which are essentially new results and their expressions are different from the Suslov Theorem. Finally, we give an example to illustrate the application of the new fundamental theorems.</description><identifier>ISSN: 1382-4090</identifier><identifier>EISSN: 1572-9303</identifier><identifier>DOI: 10.1007/s11139-020-00298-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Combinatorics ; Difference equations ; Field Theory and Polynomials ; Fourier Analysis ; Functions of a Complex Variable ; Lattices ; Mathematics ; Mathematics and Statistics ; Number Theory ; Theorems</subject><ispartof>The Ramanujan journal, 2020-11, Vol.53 (2), p.285-318</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-ff7e813404270a4fa415829c13572e210dcc6e75687c73eee75aac0477a315833</cites><orcidid>0000-0002-4874-4338</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27906,27907</link.rule.ids></links><search><creatorcontrib>Cheng, Jinfa</creatorcontrib><creatorcontrib>Dai, Weizhong</creatorcontrib><title>Adjoint difference equation for the Nikiforov–Uvarov–Suslov difference equation of hypergeometric type on non-uniform lattices</title><title>The Ramanujan journal</title><addtitle>Ramanujan J</addtitle><description>In this article, we obtain the adjoint difference equation for the Nikiforov–Uvarov–Suslov difference equation of hypergeometric type on non-uniform lattices, and prove it to be a difference equation of hypergeometric type on non-uniform lattices as well. The particular solutions of the adjoint difference equation are then obtained. As an application of these particular solutions, we use them to obtain the particular solutions for the original difference equation of hypergeometric type on non-uniform lattices. In addition, we give another kind of fundamental theorems for the Nikiforov–Uvarov–Suslov difference equation of hypergeometric type, which are essentially new results and their expressions are different from the Suslov Theorem. Finally, we give an example to illustrate the application of the new fundamental theorems.</description><subject>Combinatorics</subject><subject>Difference equations</subject><subject>Field Theory and Polynomials</subject><subject>Fourier Analysis</subject><subject>Functions of a Complex Variable</subject><subject>Lattices</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><subject>Theorems</subject><issn>1382-4090</issn><issn>1572-9303</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEUDKJgrf4BTwHP0Zdk2-weS_ELih605xDSl3Zru2mTbMGb-Bf8h_4SU1fwIp7eDG9mHm8IOedwyQHUVeScy4qBAAYgqpLJA9LjAyVYJUEeZixLwQqo4JicxLgEgAKk6pH30Wzp6ybRWe0cBmwsUty2JtW-oc4HmhZIH-qXOmO_-3z7mO5MB57auPK7P33e0cXrBsMc_RpTqC1NmdK8aXzD2mYftqYrk1JtMZ6SI2dWEc9-Zp9Mb66fx3ds8nh7Px5NmBUKEnNOYcllAUWmpnCm4INSVJbL_CYKDjNrh6gGw1JZJREzNMZCoZSRWSlln1x0uZvgty3GpJe-DU0-qUUxAFUKwcusEp3KBh9jQKc3oV6b8Ko56H3Xuuta5671d9d6Hy07U8ziZo7hN_of1xe3woXs</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Cheng, Jinfa</creator><creator>Dai, Weizhong</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4874-4338</orcidid></search><sort><creationdate>20201101</creationdate><title>Adjoint difference equation for the Nikiforov–Uvarov–Suslov difference equation of hypergeometric type on non-uniform lattices</title><author>Cheng, Jinfa ; Dai, Weizhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-ff7e813404270a4fa415829c13572e210dcc6e75687c73eee75aac0477a315833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Combinatorics</topic><topic>Difference equations</topic><topic>Field Theory and Polynomials</topic><topic>Fourier Analysis</topic><topic>Functions of a Complex Variable</topic><topic>Lattices</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Jinfa</creatorcontrib><creatorcontrib>Dai, Weizhong</creatorcontrib><collection>CrossRef</collection><jtitle>The Ramanujan journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Jinfa</au><au>Dai, Weizhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adjoint difference equation for the Nikiforov–Uvarov–Suslov difference equation of hypergeometric type on non-uniform lattices</atitle><jtitle>The Ramanujan journal</jtitle><stitle>Ramanujan J</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>53</volume><issue>2</issue><spage>285</spage><epage>318</epage><pages>285-318</pages><issn>1382-4090</issn><eissn>1572-9303</eissn><abstract>In this article, we obtain the adjoint difference equation for the Nikiforov–Uvarov–Suslov difference equation of hypergeometric type on non-uniform lattices, and prove it to be a difference equation of hypergeometric type on non-uniform lattices as well. The particular solutions of the adjoint difference equation are then obtained. As an application of these particular solutions, we use them to obtain the particular solutions for the original difference equation of hypergeometric type on non-uniform lattices. In addition, we give another kind of fundamental theorems for the Nikiforov–Uvarov–Suslov difference equation of hypergeometric type, which are essentially new results and their expressions are different from the Suslov Theorem. Finally, we give an example to illustrate the application of the new fundamental theorems.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11139-020-00298-3</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0002-4874-4338</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1382-4090 |
ispartof | The Ramanujan journal, 2020-11, Vol.53 (2), p.285-318 |
issn | 1382-4090 1572-9303 |
language | eng |
recordid | cdi_proquest_journals_2450782218 |
source | Springer Nature |
subjects | Combinatorics Difference equations Field Theory and Polynomials Fourier Analysis Functions of a Complex Variable Lattices Mathematics Mathematics and Statistics Number Theory Theorems |
title | Adjoint difference equation for the Nikiforov–Uvarov–Suslov difference equation of hypergeometric type on non-uniform lattices |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T07%3A57%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adjoint%20difference%20equation%20for%20the%20Nikiforov%E2%80%93Uvarov%E2%80%93Suslov%20difference%20equation%20of%20hypergeometric%20type%20on%20non-uniform%20lattices&rft.jtitle=The%20Ramanujan%20journal&rft.au=Cheng,%20Jinfa&rft.date=2020-11-01&rft.volume=53&rft.issue=2&rft.spage=285&rft.epage=318&rft.pages=285-318&rft.issn=1382-4090&rft.eissn=1572-9303&rft_id=info:doi/10.1007/s11139-020-00298-3&rft_dat=%3Cproquest_cross%3E2450782218%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-ff7e813404270a4fa415829c13572e210dcc6e75687c73eee75aac0477a315833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2450782218&rft_id=info:pmid/&rfr_iscdi=true |