Loading…

Adjoint difference equation for the Nikiforov–Uvarov–Suslov difference equation of hypergeometric type on non-uniform lattices

In this article, we obtain the adjoint difference equation for the Nikiforov–Uvarov–Suslov difference equation of hypergeometric type on non-uniform lattices, and prove it to be a difference equation of hypergeometric type on non-uniform lattices as well. The particular solutions of the adjoint diff...

Full description

Saved in:
Bibliographic Details
Published in:The Ramanujan journal 2020-11, Vol.53 (2), p.285-318
Main Authors: Cheng, Jinfa, Dai, Weizhong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c270t-ff7e813404270a4fa415829c13572e210dcc6e75687c73eee75aac0477a315833
container_end_page 318
container_issue 2
container_start_page 285
container_title The Ramanujan journal
container_volume 53
creator Cheng, Jinfa
Dai, Weizhong
description In this article, we obtain the adjoint difference equation for the Nikiforov–Uvarov–Suslov difference equation of hypergeometric type on non-uniform lattices, and prove it to be a difference equation of hypergeometric type on non-uniform lattices as well. The particular solutions of the adjoint difference equation are then obtained. As an application of these particular solutions, we use them to obtain the particular solutions for the original difference equation of hypergeometric type on non-uniform lattices. In addition, we give another kind of fundamental theorems for the Nikiforov–Uvarov–Suslov difference equation of hypergeometric type, which are essentially new results and their expressions are different from the Suslov Theorem. Finally, we give an example to illustrate the application of the new fundamental theorems.
doi_str_mv 10.1007/s11139-020-00298-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2450782218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450782218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-ff7e813404270a4fa415829c13572e210dcc6e75687c73eee75aac0477a315833</originalsourceid><addsrcrecordid>eNp9UE1LAzEUDKJgrf4BTwHP0Zdk2-weS_ELih605xDSl3Zru2mTbMGb-Bf8h_4SU1fwIp7eDG9mHm8IOedwyQHUVeScy4qBAAYgqpLJA9LjAyVYJUEeZixLwQqo4JicxLgEgAKk6pH30Wzp6ybRWe0cBmwsUty2JtW-oc4HmhZIH-qXOmO_-3z7mO5MB57auPK7P33e0cXrBsMc_RpTqC1NmdK8aXzD2mYftqYrk1JtMZ6SI2dWEc9-Zp9Mb66fx3ds8nh7Px5NmBUKEnNOYcllAUWmpnCm4INSVJbL_CYKDjNrh6gGw1JZJREzNMZCoZSRWSlln1x0uZvgty3GpJe-DU0-qUUxAFUKwcusEp3KBh9jQKc3oV6b8Ko56H3Xuuta5671d9d6Hy07U8ziZo7hN_of1xe3woXs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450782218</pqid></control><display><type>article</type><title>Adjoint difference equation for the Nikiforov–Uvarov–Suslov difference equation of hypergeometric type on non-uniform lattices</title><source>Springer Nature</source><creator>Cheng, Jinfa ; Dai, Weizhong</creator><creatorcontrib>Cheng, Jinfa ; Dai, Weizhong</creatorcontrib><description>In this article, we obtain the adjoint difference equation for the Nikiforov–Uvarov–Suslov difference equation of hypergeometric type on non-uniform lattices, and prove it to be a difference equation of hypergeometric type on non-uniform lattices as well. The particular solutions of the adjoint difference equation are then obtained. As an application of these particular solutions, we use them to obtain the particular solutions for the original difference equation of hypergeometric type on non-uniform lattices. In addition, we give another kind of fundamental theorems for the Nikiforov–Uvarov–Suslov difference equation of hypergeometric type, which are essentially new results and their expressions are different from the Suslov Theorem. Finally, we give an example to illustrate the application of the new fundamental theorems.</description><identifier>ISSN: 1382-4090</identifier><identifier>EISSN: 1572-9303</identifier><identifier>DOI: 10.1007/s11139-020-00298-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Combinatorics ; Difference equations ; Field Theory and Polynomials ; Fourier Analysis ; Functions of a Complex Variable ; Lattices ; Mathematics ; Mathematics and Statistics ; Number Theory ; Theorems</subject><ispartof>The Ramanujan journal, 2020-11, Vol.53 (2), p.285-318</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-ff7e813404270a4fa415829c13572e210dcc6e75687c73eee75aac0477a315833</cites><orcidid>0000-0002-4874-4338</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27906,27907</link.rule.ids></links><search><creatorcontrib>Cheng, Jinfa</creatorcontrib><creatorcontrib>Dai, Weizhong</creatorcontrib><title>Adjoint difference equation for the Nikiforov–Uvarov–Suslov difference equation of hypergeometric type on non-uniform lattices</title><title>The Ramanujan journal</title><addtitle>Ramanujan J</addtitle><description>In this article, we obtain the adjoint difference equation for the Nikiforov–Uvarov–Suslov difference equation of hypergeometric type on non-uniform lattices, and prove it to be a difference equation of hypergeometric type on non-uniform lattices as well. The particular solutions of the adjoint difference equation are then obtained. As an application of these particular solutions, we use them to obtain the particular solutions for the original difference equation of hypergeometric type on non-uniform lattices. In addition, we give another kind of fundamental theorems for the Nikiforov–Uvarov–Suslov difference equation of hypergeometric type, which are essentially new results and their expressions are different from the Suslov Theorem. Finally, we give an example to illustrate the application of the new fundamental theorems.</description><subject>Combinatorics</subject><subject>Difference equations</subject><subject>Field Theory and Polynomials</subject><subject>Fourier Analysis</subject><subject>Functions of a Complex Variable</subject><subject>Lattices</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><subject>Theorems</subject><issn>1382-4090</issn><issn>1572-9303</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEUDKJgrf4BTwHP0Zdk2-weS_ELih605xDSl3Zru2mTbMGb-Bf8h_4SU1fwIp7eDG9mHm8IOedwyQHUVeScy4qBAAYgqpLJA9LjAyVYJUEeZixLwQqo4JicxLgEgAKk6pH30Wzp6ybRWe0cBmwsUty2JtW-oc4HmhZIH-qXOmO_-3z7mO5MB57auPK7P33e0cXrBsMc_RpTqC1NmdK8aXzD2mYftqYrk1JtMZ6SI2dWEc9-Zp9Mb66fx3ds8nh7Px5NmBUKEnNOYcllAUWmpnCm4INSVJbL_CYKDjNrh6gGw1JZJREzNMZCoZSRWSlln1x0uZvgty3GpJe-DU0-qUUxAFUKwcusEp3KBh9jQKc3oV6b8Ko56H3Xuuta5671d9d6Hy07U8ziZo7hN_of1xe3woXs</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Cheng, Jinfa</creator><creator>Dai, Weizhong</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4874-4338</orcidid></search><sort><creationdate>20201101</creationdate><title>Adjoint difference equation for the Nikiforov–Uvarov–Suslov difference equation of hypergeometric type on non-uniform lattices</title><author>Cheng, Jinfa ; Dai, Weizhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-ff7e813404270a4fa415829c13572e210dcc6e75687c73eee75aac0477a315833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Combinatorics</topic><topic>Difference equations</topic><topic>Field Theory and Polynomials</topic><topic>Fourier Analysis</topic><topic>Functions of a Complex Variable</topic><topic>Lattices</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Jinfa</creatorcontrib><creatorcontrib>Dai, Weizhong</creatorcontrib><collection>CrossRef</collection><jtitle>The Ramanujan journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Jinfa</au><au>Dai, Weizhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adjoint difference equation for the Nikiforov–Uvarov–Suslov difference equation of hypergeometric type on non-uniform lattices</atitle><jtitle>The Ramanujan journal</jtitle><stitle>Ramanujan J</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>53</volume><issue>2</issue><spage>285</spage><epage>318</epage><pages>285-318</pages><issn>1382-4090</issn><eissn>1572-9303</eissn><abstract>In this article, we obtain the adjoint difference equation for the Nikiforov–Uvarov–Suslov difference equation of hypergeometric type on non-uniform lattices, and prove it to be a difference equation of hypergeometric type on non-uniform lattices as well. The particular solutions of the adjoint difference equation are then obtained. As an application of these particular solutions, we use them to obtain the particular solutions for the original difference equation of hypergeometric type on non-uniform lattices. In addition, we give another kind of fundamental theorems for the Nikiforov–Uvarov–Suslov difference equation of hypergeometric type, which are essentially new results and their expressions are different from the Suslov Theorem. Finally, we give an example to illustrate the application of the new fundamental theorems.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11139-020-00298-3</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0002-4874-4338</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1382-4090
ispartof The Ramanujan journal, 2020-11, Vol.53 (2), p.285-318
issn 1382-4090
1572-9303
language eng
recordid cdi_proquest_journals_2450782218
source Springer Nature
subjects Combinatorics
Difference equations
Field Theory and Polynomials
Fourier Analysis
Functions of a Complex Variable
Lattices
Mathematics
Mathematics and Statistics
Number Theory
Theorems
title Adjoint difference equation for the Nikiforov–Uvarov–Suslov difference equation of hypergeometric type on non-uniform lattices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T07%3A57%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adjoint%20difference%20equation%20for%20the%20Nikiforov%E2%80%93Uvarov%E2%80%93Suslov%20difference%20equation%20of%20hypergeometric%20type%20on%20non-uniform%20lattices&rft.jtitle=The%20Ramanujan%20journal&rft.au=Cheng,%20Jinfa&rft.date=2020-11-01&rft.volume=53&rft.issue=2&rft.spage=285&rft.epage=318&rft.pages=285-318&rft.issn=1382-4090&rft.eissn=1572-9303&rft_id=info:doi/10.1007/s11139-020-00298-3&rft_dat=%3Cproquest_cross%3E2450782218%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-ff7e813404270a4fa415829c13572e210dcc6e75687c73eee75aac0477a315833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2450782218&rft_id=info:pmid/&rfr_iscdi=true