Loading…
Downscale transfer of quasigeostrophic energy catalyzed by near-inertial waves
Wind forcing injects energy into mesoscale eddies and near-inertial waves (NIWs) in the ocean, and the NIWs are believed to solve the puzzle of mesoscale energy budget by absorbing energy from mesoscale eddies. This work studies the turbulent energy transfer in the NIW–quasigeostrophic mean mesoscal...
Saved in:
Published in: | Journal of fluid mechanics 2020-12, Vol.904, Article A40 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Wind forcing injects energy into mesoscale eddies and near-inertial waves (NIWs) in the ocean, and the NIWs are believed to solve the puzzle of mesoscale energy budget by absorbing energy from mesoscale eddies. This work studies the turbulent energy transfer in the NIW–quasigeostrophic mean mesoscale eddy coupled system based on a previously derived two-dimensional model which inherits conserved quantities in Boussinesq equations (Xie & Vanneste, J. Fluid Mech., vol. 774, 2015, pp. 147–169). The conservation of energy, potential enstrophy and wave action implies the existence of phase transition with a change of the relative strength between NIW and mean-flow, quantified by a parameter $R$. By running forced-dissipative numerical simulations, we justify the existence of second-order phase transition around a critical value $R_c$. When $0 |
---|---|
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/jfm.2020.709 |