Loading…

Time Stamp - A Novel Time-to-Digital Demodulation Method for Bioimpedance Implant Applications

Bioimpedance analysis is a noninvasive and inexpensive technology used to investigate the electrical properties of biological tissues. The analysis requires demodulation to extract the real and imaginary parts of the impedance. Conventional systems use complex architectures such as I-Q demodulation....

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on biomedical circuits and systems 2020-10, Vol.14 (5), p.997-1007
Main Authors: Wu, Yu, Jiang, Dai, Habibollahi, Maryam, Almarri, Noora, Demosthenous, Andreas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c395t-c445dd11edc2845754c0e21c7a51a1514f391fbbcb975b4e1afc04006ac130fa3
cites cdi_FETCH-LOGICAL-c395t-c445dd11edc2845754c0e21c7a51a1514f391fbbcb975b4e1afc04006ac130fa3
container_end_page 1007
container_issue 5
container_start_page 997
container_title IEEE transactions on biomedical circuits and systems
container_volume 14
creator Wu, Yu
Jiang, Dai
Habibollahi, Maryam
Almarri, Noora
Demosthenous, Andreas
description Bioimpedance analysis is a noninvasive and inexpensive technology used to investigate the electrical properties of biological tissues. The analysis requires demodulation to extract the real and imaginary parts of the impedance. Conventional systems use complex architectures such as I-Q demodulation. In this paper, a very simple alternative time-to-digital demodulation method or 'time stamp' is proposed. It employs only three comparators to identify or stamp in the time domain, the crossing points of the excitation signal, and the measured signal. In a CMOS proof of concept design, the accuracy of impedance magnitude and phase is 97.06% and 98.81% respectively over a bandwidth of 10 kHz to 500 kHz. The effect of fractional-N synthesis is analysed for the counter-based zero crossing phase detector obtaining a finer phase resolution (0.51˚ at 500 kHz) using a counter clock frequency ({{\boldsymbol{f}}_{{\boldsymbol{clk}}} = 12.5 MHz). Because of its circuit simplicity and ease of transmitting the time stamps, the method is very suited to implantable devices requiring low area and power consumption.
doi_str_mv 10.1109/TBCAS.2020.3012057
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2451191676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9149688</ieee_id><sourcerecordid>2451191676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-c445dd11edc2845754c0e21c7a51a1514f391fbbcb975b4e1afc04006ac130fa3</originalsourceid><addsrcrecordid>eNpdkE1v2zAMhoViRb_WP7ABg4BdenFK6sOOjmmyfgDpdmh2rSHL9KbCjjzLHtB_X7tJe-iJBPmQePEw9gVhhgjmcnO1XDzMBAiYSUABOjtgJ2gUJMYY-DT1UiRKK33MTmN8AtCpMOKIHUuRqVSm4oQ9bnxD_KG3TcsTvuA_w3-q-TRM-pCs_B_f25qvqAnlUNvehy2_p_5vKHkVOn7lg29aKu3WEb9r2tpue75o29q7VzZ-ZoeVrSOd7-sZ-339Y7O8Tda_bu6Wi3XipNF94pTSZYlIpRNzpTOtHJBAl1mNFjWqShqsisIVJtOFIrSVAwWQWocSKivP2MXub9uFfwPFPm98dFSPgSgMMRdKgsxSmKcj-v0D-hSGbjumGymNaDDNJkrsKNeFGDuq8rbzje2ec4R8sp-_2s8n-_ne_nj0bf96KBoq30_edI_A1x3gieh9bVCZdD6XL7ODh38</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451191676</pqid></control><display><type>article</type><title>Time Stamp - A Novel Time-to-Digital Demodulation Method for Bioimpedance Implant Applications</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Wu, Yu ; Jiang, Dai ; Habibollahi, Maryam ; Almarri, Noora ; Demosthenous, Andreas</creator><creatorcontrib>Wu, Yu ; Jiang, Dai ; Habibollahi, Maryam ; Almarri, Noora ; Demosthenous, Andreas</creatorcontrib><description>Bioimpedance analysis is a noninvasive and inexpensive technology used to investigate the electrical properties of biological tissues. The analysis requires demodulation to extract the real and imaginary parts of the impedance. Conventional systems use complex architectures such as I-Q demodulation. In this paper, a very simple alternative time-to-digital demodulation method or 'time stamp' is proposed. It employs only three comparators to identify or stamp in the time domain, the crossing points of the excitation signal, and the measured signal. In a CMOS proof of concept design, the accuracy of impedance magnitude and phase is 97.06% and 98.81% respectively over a bandwidth of 10 kHz to 500 kHz. The effect of fractional-N synthesis is analysed for the counter-based zero crossing phase detector obtaining a finer phase resolution (0.51˚ at 500 kHz) using a counter clock frequency (&lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;{{\boldsymbol{f}}_{{\boldsymbol{clk}}}&lt;/tex-math&gt;&lt;/inline-formula&gt; = 12.5 MHz). Because of its circuit simplicity and ease of transmitting the time stamps, the method is very suited to implantable devices requiring low area and power consumption.</description><identifier>ISSN: 1932-4545</identifier><identifier>EISSN: 1940-9990</identifier><identifier>DOI: 10.1109/TBCAS.2020.3012057</identifier><identifier>PMID: 32746362</identifier><identifier>CODEN: ITBCCW</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Bioimpedance ; Biological properties ; Biomedical measurement ; Circuits ; CMOS ; comparator ; Comparators ; Current measurement ; Demodulation ; Electrical properties ; Gain ; Impedance ; impedance demodulation ; implantable devices ; Implants ; Phase detectors ; Power consumption ; time-to-digital conversion ; Tissue analysis ; Tissues</subject><ispartof>IEEE transactions on biomedical circuits and systems, 2020-10, Vol.14 (5), p.997-1007</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-c445dd11edc2845754c0e21c7a51a1514f391fbbcb975b4e1afc04006ac130fa3</citedby><cites>FETCH-LOGICAL-c395t-c445dd11edc2845754c0e21c7a51a1514f391fbbcb975b4e1afc04006ac130fa3</cites><orcidid>0000-0002-2818-7327 ; 0000-0001-9575-8831 ; 0000-0003-2755-0750 ; 0000-0003-0623-963X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9149688$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32746362$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Yu</creatorcontrib><creatorcontrib>Jiang, Dai</creatorcontrib><creatorcontrib>Habibollahi, Maryam</creatorcontrib><creatorcontrib>Almarri, Noora</creatorcontrib><creatorcontrib>Demosthenous, Andreas</creatorcontrib><title>Time Stamp - A Novel Time-to-Digital Demodulation Method for Bioimpedance Implant Applications</title><title>IEEE transactions on biomedical circuits and systems</title><addtitle>TBCAS</addtitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><description>Bioimpedance analysis is a noninvasive and inexpensive technology used to investigate the electrical properties of biological tissues. The analysis requires demodulation to extract the real and imaginary parts of the impedance. Conventional systems use complex architectures such as I-Q demodulation. In this paper, a very simple alternative time-to-digital demodulation method or 'time stamp' is proposed. It employs only three comparators to identify or stamp in the time domain, the crossing points of the excitation signal, and the measured signal. In a CMOS proof of concept design, the accuracy of impedance magnitude and phase is 97.06% and 98.81% respectively over a bandwidth of 10 kHz to 500 kHz. The effect of fractional-N synthesis is analysed for the counter-based zero crossing phase detector obtaining a finer phase resolution (0.51˚ at 500 kHz) using a counter clock frequency (&lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;{{\boldsymbol{f}}_{{\boldsymbol{clk}}}&lt;/tex-math&gt;&lt;/inline-formula&gt; = 12.5 MHz). Because of its circuit simplicity and ease of transmitting the time stamps, the method is very suited to implantable devices requiring low area and power consumption.</description><subject>Bioimpedance</subject><subject>Biological properties</subject><subject>Biomedical measurement</subject><subject>Circuits</subject><subject>CMOS</subject><subject>comparator</subject><subject>Comparators</subject><subject>Current measurement</subject><subject>Demodulation</subject><subject>Electrical properties</subject><subject>Gain</subject><subject>Impedance</subject><subject>impedance demodulation</subject><subject>implantable devices</subject><subject>Implants</subject><subject>Phase detectors</subject><subject>Power consumption</subject><subject>time-to-digital conversion</subject><subject>Tissue analysis</subject><subject>Tissues</subject><issn>1932-4545</issn><issn>1940-9990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkE1v2zAMhoViRb_WP7ABg4BdenFK6sOOjmmyfgDpdmh2rSHL9KbCjjzLHtB_X7tJe-iJBPmQePEw9gVhhgjmcnO1XDzMBAiYSUABOjtgJ2gUJMYY-DT1UiRKK33MTmN8AtCpMOKIHUuRqVSm4oQ9bnxD_KG3TcsTvuA_w3-q-TRM-pCs_B_f25qvqAnlUNvehy2_p_5vKHkVOn7lg29aKu3WEb9r2tpue75o29q7VzZ-ZoeVrSOd7-sZ-339Y7O8Tda_bu6Wi3XipNF94pTSZYlIpRNzpTOtHJBAl1mNFjWqShqsisIVJtOFIrSVAwWQWocSKivP2MXub9uFfwPFPm98dFSPgSgMMRdKgsxSmKcj-v0D-hSGbjumGymNaDDNJkrsKNeFGDuq8rbzje2ec4R8sp-_2s8n-_ne_nj0bf96KBoq30_edI_A1x3gieh9bVCZdD6XL7ODh38</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Wu, Yu</creator><creator>Jiang, Dai</creator><creator>Habibollahi, Maryam</creator><creator>Almarri, Noora</creator><creator>Demosthenous, Andreas</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2818-7327</orcidid><orcidid>https://orcid.org/0000-0001-9575-8831</orcidid><orcidid>https://orcid.org/0000-0003-2755-0750</orcidid><orcidid>https://orcid.org/0000-0003-0623-963X</orcidid></search><sort><creationdate>20201001</creationdate><title>Time Stamp - A Novel Time-to-Digital Demodulation Method for Bioimpedance Implant Applications</title><author>Wu, Yu ; Jiang, Dai ; Habibollahi, Maryam ; Almarri, Noora ; Demosthenous, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-c445dd11edc2845754c0e21c7a51a1514f391fbbcb975b4e1afc04006ac130fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bioimpedance</topic><topic>Biological properties</topic><topic>Biomedical measurement</topic><topic>Circuits</topic><topic>CMOS</topic><topic>comparator</topic><topic>Comparators</topic><topic>Current measurement</topic><topic>Demodulation</topic><topic>Electrical properties</topic><topic>Gain</topic><topic>Impedance</topic><topic>impedance demodulation</topic><topic>implantable devices</topic><topic>Implants</topic><topic>Phase detectors</topic><topic>Power consumption</topic><topic>time-to-digital conversion</topic><topic>Tissue analysis</topic><topic>Tissues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Yu</creatorcontrib><creatorcontrib>Jiang, Dai</creatorcontrib><creatorcontrib>Habibollahi, Maryam</creatorcontrib><creatorcontrib>Almarri, Noora</creatorcontrib><creatorcontrib>Demosthenous, Andreas</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on biomedical circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Yu</au><au>Jiang, Dai</au><au>Habibollahi, Maryam</au><au>Almarri, Noora</au><au>Demosthenous, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time Stamp - A Novel Time-to-Digital Demodulation Method for Bioimpedance Implant Applications</atitle><jtitle>IEEE transactions on biomedical circuits and systems</jtitle><stitle>TBCAS</stitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>14</volume><issue>5</issue><spage>997</spage><epage>1007</epage><pages>997-1007</pages><issn>1932-4545</issn><eissn>1940-9990</eissn><coden>ITBCCW</coden><abstract>Bioimpedance analysis is a noninvasive and inexpensive technology used to investigate the electrical properties of biological tissues. The analysis requires demodulation to extract the real and imaginary parts of the impedance. Conventional systems use complex architectures such as I-Q demodulation. In this paper, a very simple alternative time-to-digital demodulation method or 'time stamp' is proposed. It employs only three comparators to identify or stamp in the time domain, the crossing points of the excitation signal, and the measured signal. In a CMOS proof of concept design, the accuracy of impedance magnitude and phase is 97.06% and 98.81% respectively over a bandwidth of 10 kHz to 500 kHz. The effect of fractional-N synthesis is analysed for the counter-based zero crossing phase detector obtaining a finer phase resolution (0.51˚ at 500 kHz) using a counter clock frequency (&lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;{{\boldsymbol{f}}_{{\boldsymbol{clk}}}&lt;/tex-math&gt;&lt;/inline-formula&gt; = 12.5 MHz). Because of its circuit simplicity and ease of transmitting the time stamps, the method is very suited to implantable devices requiring low area and power consumption.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>32746362</pmid><doi>10.1109/TBCAS.2020.3012057</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2818-7327</orcidid><orcidid>https://orcid.org/0000-0001-9575-8831</orcidid><orcidid>https://orcid.org/0000-0003-2755-0750</orcidid><orcidid>https://orcid.org/0000-0003-0623-963X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-4545
ispartof IEEE transactions on biomedical circuits and systems, 2020-10, Vol.14 (5), p.997-1007
issn 1932-4545
1940-9990
language eng
recordid cdi_proquest_journals_2451191676
source IEEE Electronic Library (IEL) Journals
subjects Bioimpedance
Biological properties
Biomedical measurement
Circuits
CMOS
comparator
Comparators
Current measurement
Demodulation
Electrical properties
Gain
Impedance
impedance demodulation
implantable devices
Implants
Phase detectors
Power consumption
time-to-digital conversion
Tissue analysis
Tissues
title Time Stamp - A Novel Time-to-Digital Demodulation Method for Bioimpedance Implant Applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A32%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time%20Stamp%20-%20A%20Novel%20Time-to-Digital%20Demodulation%20Method%20for%20Bioimpedance%20Implant%20Applications&rft.jtitle=IEEE%20transactions%20on%20biomedical%20circuits%20and%20systems&rft.au=Wu,%20Yu&rft.date=2020-10-01&rft.volume=14&rft.issue=5&rft.spage=997&rft.epage=1007&rft.pages=997-1007&rft.issn=1932-4545&rft.eissn=1940-9990&rft.coden=ITBCCW&rft_id=info:doi/10.1109/TBCAS.2020.3012057&rft_dat=%3Cproquest_ieee_%3E2451191676%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c395t-c445dd11edc2845754c0e21c7a51a1514f391fbbcb975b4e1afc04006ac130fa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2451191676&rft_id=info:pmid/32746362&rft_ieee_id=9149688&rfr_iscdi=true