Loading…
Time Stamp - A Novel Time-to-Digital Demodulation Method for Bioimpedance Implant Applications
Bioimpedance analysis is a noninvasive and inexpensive technology used to investigate the electrical properties of biological tissues. The analysis requires demodulation to extract the real and imaginary parts of the impedance. Conventional systems use complex architectures such as I-Q demodulation....
Saved in:
Published in: | IEEE transactions on biomedical circuits and systems 2020-10, Vol.14 (5), p.997-1007 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c395t-c445dd11edc2845754c0e21c7a51a1514f391fbbcb975b4e1afc04006ac130fa3 |
---|---|
cites | cdi_FETCH-LOGICAL-c395t-c445dd11edc2845754c0e21c7a51a1514f391fbbcb975b4e1afc04006ac130fa3 |
container_end_page | 1007 |
container_issue | 5 |
container_start_page | 997 |
container_title | IEEE transactions on biomedical circuits and systems |
container_volume | 14 |
creator | Wu, Yu Jiang, Dai Habibollahi, Maryam Almarri, Noora Demosthenous, Andreas |
description | Bioimpedance analysis is a noninvasive and inexpensive technology used to investigate the electrical properties of biological tissues. The analysis requires demodulation to extract the real and imaginary parts of the impedance. Conventional systems use complex architectures such as I-Q demodulation. In this paper, a very simple alternative time-to-digital demodulation method or 'time stamp' is proposed. It employs only three comparators to identify or stamp in the time domain, the crossing points of the excitation signal, and the measured signal. In a CMOS proof of concept design, the accuracy of impedance magnitude and phase is 97.06% and 98.81% respectively over a bandwidth of 10 kHz to 500 kHz. The effect of fractional-N synthesis is analysed for the counter-based zero crossing phase detector obtaining a finer phase resolution (0.51˚ at 500 kHz) using a counter clock frequency ({{\boldsymbol{f}}_{{\boldsymbol{clk}}} = 12.5 MHz). Because of its circuit simplicity and ease of transmitting the time stamps, the method is very suited to implantable devices requiring low area and power consumption. |
doi_str_mv | 10.1109/TBCAS.2020.3012057 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2451191676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9149688</ieee_id><sourcerecordid>2451191676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-c445dd11edc2845754c0e21c7a51a1514f391fbbcb975b4e1afc04006ac130fa3</originalsourceid><addsrcrecordid>eNpdkE1v2zAMhoViRb_WP7ABg4BdenFK6sOOjmmyfgDpdmh2rSHL9KbCjjzLHtB_X7tJe-iJBPmQePEw9gVhhgjmcnO1XDzMBAiYSUABOjtgJ2gUJMYY-DT1UiRKK33MTmN8AtCpMOKIHUuRqVSm4oQ9bnxD_KG3TcsTvuA_w3-q-TRM-pCs_B_f25qvqAnlUNvehy2_p_5vKHkVOn7lg29aKu3WEb9r2tpue75o29q7VzZ-ZoeVrSOd7-sZ-339Y7O8Tda_bu6Wi3XipNF94pTSZYlIpRNzpTOtHJBAl1mNFjWqShqsisIVJtOFIrSVAwWQWocSKivP2MXub9uFfwPFPm98dFSPgSgMMRdKgsxSmKcj-v0D-hSGbjumGymNaDDNJkrsKNeFGDuq8rbzje2ec4R8sp-_2s8n-_ne_nj0bf96KBoq30_edI_A1x3gieh9bVCZdD6XL7ODh38</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451191676</pqid></control><display><type>article</type><title>Time Stamp - A Novel Time-to-Digital Demodulation Method for Bioimpedance Implant Applications</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Wu, Yu ; Jiang, Dai ; Habibollahi, Maryam ; Almarri, Noora ; Demosthenous, Andreas</creator><creatorcontrib>Wu, Yu ; Jiang, Dai ; Habibollahi, Maryam ; Almarri, Noora ; Demosthenous, Andreas</creatorcontrib><description>Bioimpedance analysis is a noninvasive and inexpensive technology used to investigate the electrical properties of biological tissues. The analysis requires demodulation to extract the real and imaginary parts of the impedance. Conventional systems use complex architectures such as I-Q demodulation. In this paper, a very simple alternative time-to-digital demodulation method or 'time stamp' is proposed. It employs only three comparators to identify or stamp in the time domain, the crossing points of the excitation signal, and the measured signal. In a CMOS proof of concept design, the accuracy of impedance magnitude and phase is 97.06% and 98.81% respectively over a bandwidth of 10 kHz to 500 kHz. The effect of fractional-N synthesis is analysed for the counter-based zero crossing phase detector obtaining a finer phase resolution (0.51˚ at 500 kHz) using a counter clock frequency (<inline-formula><tex-math notation="LaTeX">{{\boldsymbol{f}}_{{\boldsymbol{clk}}}</tex-math></inline-formula> = 12.5 MHz). Because of its circuit simplicity and ease of transmitting the time stamps, the method is very suited to implantable devices requiring low area and power consumption.</description><identifier>ISSN: 1932-4545</identifier><identifier>EISSN: 1940-9990</identifier><identifier>DOI: 10.1109/TBCAS.2020.3012057</identifier><identifier>PMID: 32746362</identifier><identifier>CODEN: ITBCCW</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Bioimpedance ; Biological properties ; Biomedical measurement ; Circuits ; CMOS ; comparator ; Comparators ; Current measurement ; Demodulation ; Electrical properties ; Gain ; Impedance ; impedance demodulation ; implantable devices ; Implants ; Phase detectors ; Power consumption ; time-to-digital conversion ; Tissue analysis ; Tissues</subject><ispartof>IEEE transactions on biomedical circuits and systems, 2020-10, Vol.14 (5), p.997-1007</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-c445dd11edc2845754c0e21c7a51a1514f391fbbcb975b4e1afc04006ac130fa3</citedby><cites>FETCH-LOGICAL-c395t-c445dd11edc2845754c0e21c7a51a1514f391fbbcb975b4e1afc04006ac130fa3</cites><orcidid>0000-0002-2818-7327 ; 0000-0001-9575-8831 ; 0000-0003-2755-0750 ; 0000-0003-0623-963X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9149688$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32746362$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Yu</creatorcontrib><creatorcontrib>Jiang, Dai</creatorcontrib><creatorcontrib>Habibollahi, Maryam</creatorcontrib><creatorcontrib>Almarri, Noora</creatorcontrib><creatorcontrib>Demosthenous, Andreas</creatorcontrib><title>Time Stamp - A Novel Time-to-Digital Demodulation Method for Bioimpedance Implant Applications</title><title>IEEE transactions on biomedical circuits and systems</title><addtitle>TBCAS</addtitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><description>Bioimpedance analysis is a noninvasive and inexpensive technology used to investigate the electrical properties of biological tissues. The analysis requires demodulation to extract the real and imaginary parts of the impedance. Conventional systems use complex architectures such as I-Q demodulation. In this paper, a very simple alternative time-to-digital demodulation method or 'time stamp' is proposed. It employs only three comparators to identify or stamp in the time domain, the crossing points of the excitation signal, and the measured signal. In a CMOS proof of concept design, the accuracy of impedance magnitude and phase is 97.06% and 98.81% respectively over a bandwidth of 10 kHz to 500 kHz. The effect of fractional-N synthesis is analysed for the counter-based zero crossing phase detector obtaining a finer phase resolution (0.51˚ at 500 kHz) using a counter clock frequency (<inline-formula><tex-math notation="LaTeX">{{\boldsymbol{f}}_{{\boldsymbol{clk}}}</tex-math></inline-formula> = 12.5 MHz). Because of its circuit simplicity and ease of transmitting the time stamps, the method is very suited to implantable devices requiring low area and power consumption.</description><subject>Bioimpedance</subject><subject>Biological properties</subject><subject>Biomedical measurement</subject><subject>Circuits</subject><subject>CMOS</subject><subject>comparator</subject><subject>Comparators</subject><subject>Current measurement</subject><subject>Demodulation</subject><subject>Electrical properties</subject><subject>Gain</subject><subject>Impedance</subject><subject>impedance demodulation</subject><subject>implantable devices</subject><subject>Implants</subject><subject>Phase detectors</subject><subject>Power consumption</subject><subject>time-to-digital conversion</subject><subject>Tissue analysis</subject><subject>Tissues</subject><issn>1932-4545</issn><issn>1940-9990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkE1v2zAMhoViRb_WP7ABg4BdenFK6sOOjmmyfgDpdmh2rSHL9KbCjjzLHtB_X7tJe-iJBPmQePEw9gVhhgjmcnO1XDzMBAiYSUABOjtgJ2gUJMYY-DT1UiRKK33MTmN8AtCpMOKIHUuRqVSm4oQ9bnxD_KG3TcsTvuA_w3-q-TRM-pCs_B_f25qvqAnlUNvehy2_p_5vKHkVOn7lg29aKu3WEb9r2tpue75o29q7VzZ-ZoeVrSOd7-sZ-339Y7O8Tda_bu6Wi3XipNF94pTSZYlIpRNzpTOtHJBAl1mNFjWqShqsisIVJtOFIrSVAwWQWocSKivP2MXub9uFfwPFPm98dFSPgSgMMRdKgsxSmKcj-v0D-hSGbjumGymNaDDNJkrsKNeFGDuq8rbzje2ec4R8sp-_2s8n-_ne_nj0bf96KBoq30_edI_A1x3gieh9bVCZdD6XL7ODh38</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Wu, Yu</creator><creator>Jiang, Dai</creator><creator>Habibollahi, Maryam</creator><creator>Almarri, Noora</creator><creator>Demosthenous, Andreas</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2818-7327</orcidid><orcidid>https://orcid.org/0000-0001-9575-8831</orcidid><orcidid>https://orcid.org/0000-0003-2755-0750</orcidid><orcidid>https://orcid.org/0000-0003-0623-963X</orcidid></search><sort><creationdate>20201001</creationdate><title>Time Stamp - A Novel Time-to-Digital Demodulation Method for Bioimpedance Implant Applications</title><author>Wu, Yu ; Jiang, Dai ; Habibollahi, Maryam ; Almarri, Noora ; Demosthenous, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-c445dd11edc2845754c0e21c7a51a1514f391fbbcb975b4e1afc04006ac130fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bioimpedance</topic><topic>Biological properties</topic><topic>Biomedical measurement</topic><topic>Circuits</topic><topic>CMOS</topic><topic>comparator</topic><topic>Comparators</topic><topic>Current measurement</topic><topic>Demodulation</topic><topic>Electrical properties</topic><topic>Gain</topic><topic>Impedance</topic><topic>impedance demodulation</topic><topic>implantable devices</topic><topic>Implants</topic><topic>Phase detectors</topic><topic>Power consumption</topic><topic>time-to-digital conversion</topic><topic>Tissue analysis</topic><topic>Tissues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Yu</creatorcontrib><creatorcontrib>Jiang, Dai</creatorcontrib><creatorcontrib>Habibollahi, Maryam</creatorcontrib><creatorcontrib>Almarri, Noora</creatorcontrib><creatorcontrib>Demosthenous, Andreas</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on biomedical circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Yu</au><au>Jiang, Dai</au><au>Habibollahi, Maryam</au><au>Almarri, Noora</au><au>Demosthenous, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time Stamp - A Novel Time-to-Digital Demodulation Method for Bioimpedance Implant Applications</atitle><jtitle>IEEE transactions on biomedical circuits and systems</jtitle><stitle>TBCAS</stitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>14</volume><issue>5</issue><spage>997</spage><epage>1007</epage><pages>997-1007</pages><issn>1932-4545</issn><eissn>1940-9990</eissn><coden>ITBCCW</coden><abstract>Bioimpedance analysis is a noninvasive and inexpensive technology used to investigate the electrical properties of biological tissues. The analysis requires demodulation to extract the real and imaginary parts of the impedance. Conventional systems use complex architectures such as I-Q demodulation. In this paper, a very simple alternative time-to-digital demodulation method or 'time stamp' is proposed. It employs only three comparators to identify or stamp in the time domain, the crossing points of the excitation signal, and the measured signal. In a CMOS proof of concept design, the accuracy of impedance magnitude and phase is 97.06% and 98.81% respectively over a bandwidth of 10 kHz to 500 kHz. The effect of fractional-N synthesis is analysed for the counter-based zero crossing phase detector obtaining a finer phase resolution (0.51˚ at 500 kHz) using a counter clock frequency (<inline-formula><tex-math notation="LaTeX">{{\boldsymbol{f}}_{{\boldsymbol{clk}}}</tex-math></inline-formula> = 12.5 MHz). Because of its circuit simplicity and ease of transmitting the time stamps, the method is very suited to implantable devices requiring low area and power consumption.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>32746362</pmid><doi>10.1109/TBCAS.2020.3012057</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2818-7327</orcidid><orcidid>https://orcid.org/0000-0001-9575-8831</orcidid><orcidid>https://orcid.org/0000-0003-2755-0750</orcidid><orcidid>https://orcid.org/0000-0003-0623-963X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-4545 |
ispartof | IEEE transactions on biomedical circuits and systems, 2020-10, Vol.14 (5), p.997-1007 |
issn | 1932-4545 1940-9990 |
language | eng |
recordid | cdi_proquest_journals_2451191676 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Bioimpedance Biological properties Biomedical measurement Circuits CMOS comparator Comparators Current measurement Demodulation Electrical properties Gain Impedance impedance demodulation implantable devices Implants Phase detectors Power consumption time-to-digital conversion Tissue analysis Tissues |
title | Time Stamp - A Novel Time-to-Digital Demodulation Method for Bioimpedance Implant Applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A32%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time%20Stamp%20-%20A%20Novel%20Time-to-Digital%20Demodulation%20Method%20for%20Bioimpedance%20Implant%20Applications&rft.jtitle=IEEE%20transactions%20on%20biomedical%20circuits%20and%20systems&rft.au=Wu,%20Yu&rft.date=2020-10-01&rft.volume=14&rft.issue=5&rft.spage=997&rft.epage=1007&rft.pages=997-1007&rft.issn=1932-4545&rft.eissn=1940-9990&rft.coden=ITBCCW&rft_id=info:doi/10.1109/TBCAS.2020.3012057&rft_dat=%3Cproquest_ieee_%3E2451191676%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c395t-c445dd11edc2845754c0e21c7a51a1514f391fbbcb975b4e1afc04006ac130fa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2451191676&rft_id=info:pmid/32746362&rft_ieee_id=9149688&rfr_iscdi=true |