Loading…

Access balancing in storage systems by labeling partial Steiner systems

Storage architectures ranging from minimum bandwidth regenerating encoded distributed storage systems to declustered-parity RAIDs can employ dense partial Steiner systems to support fast reads, writes, and recovery of failed storage units. To enhance performance, popularities of the data items shoul...

Full description

Saved in:
Bibliographic Details
Published in:Designs, codes, and cryptography codes, and cryptography, 2020-11, Vol.88 (11), p.2361-2376
Main Authors: Chee, Yeow Meng, Colbourn, Charles J., Dau, Hoang, Gabrys, Ryan, Ling, Alan C. H., Lusi, Dylan, Milenkovic, Olgica
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-f9c50959a0de763ae7d6a925d2ab97f60fde96ff751488ac5236087f30bf23e63
cites cdi_FETCH-LOGICAL-c319t-f9c50959a0de763ae7d6a925d2ab97f60fde96ff751488ac5236087f30bf23e63
container_end_page 2376
container_issue 11
container_start_page 2361
container_title Designs, codes, and cryptography
container_volume 88
creator Chee, Yeow Meng
Colbourn, Charles J.
Dau, Hoang
Gabrys, Ryan
Ling, Alan C. H.
Lusi, Dylan
Milenkovic, Olgica
description Storage architectures ranging from minimum bandwidth regenerating encoded distributed storage systems to declustered-parity RAIDs can employ dense partial Steiner systems to support fast reads, writes, and recovery of failed storage units. To enhance performance, popularities of the data items should be taken into account to make frequencies of accesses to storage units as uniform as possible. A combinatorial model ranks items by popularity and assigns data items to elements in a dense partial Steiner system so that the sums of ranks of the elements in each block are as equal as possible. By developing necessary conditions in terms of independent sets, we demonstrate that certain Steiner systems must have a much larger difference between the largest and smallest block sums than is dictated by an elementary lower bound. In contrast, we also show that certain dense partial S ( t , t + 1 , v ) designs can be labeled to realize the elementary lower bound. Furthermore, we prove that for every admissible order v , there is a Steiner triple system ( S (2, 3,  v )) whose largest difference in block sums is within an additive constant of the lower bound.
doi_str_mv 10.1007/s10623-020-00786-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2451637923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2451637923</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f9c50959a0de763ae7d6a925d2ab97f60fde96ff751488ac5236087f30bf23e63</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKt_wNOC5-gkaZLNsRStQsGDeg7Z7KRs2e7WZHtof72pq3jzNAzve2-GR8gtg3sGoB8SA8UFBQ40r6WixzMyYVILqmWpzskEDJeUAeeX5CqlDQAwAXxClnPvMaWicq3rfNOti6Yr0tBHt8YiHdKA2yweitZV2J7knYtD49ribcCmw_jLXJOL4NqENz9zSj6eHt8Xz3T1unxZzFfUC2YGGoyXYKRxUKNWwqGulcuv1dxVRgcFoUajQtCSzcrSecmFglIHAVXgApWYkrsxdxf7zz2mwW76fezySctnkimhDReZ4iPlY59SxGB3sdm6eLAM7KkwOxZmc2H2uzB7zCYxmlKGuzXGv-h_XF8QiG6l</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451637923</pqid></control><display><type>article</type><title>Access balancing in storage systems by labeling partial Steiner systems</title><source>Springer Nature</source><creator>Chee, Yeow Meng ; Colbourn, Charles J. ; Dau, Hoang ; Gabrys, Ryan ; Ling, Alan C. H. ; Lusi, Dylan ; Milenkovic, Olgica</creator><creatorcontrib>Chee, Yeow Meng ; Colbourn, Charles J. ; Dau, Hoang ; Gabrys, Ryan ; Ling, Alan C. H. ; Lusi, Dylan ; Milenkovic, Olgica</creatorcontrib><description>Storage architectures ranging from minimum bandwidth regenerating encoded distributed storage systems to declustered-parity RAIDs can employ dense partial Steiner systems to support fast reads, writes, and recovery of failed storage units. To enhance performance, popularities of the data items should be taken into account to make frequencies of accesses to storage units as uniform as possible. A combinatorial model ranks items by popularity and assigns data items to elements in a dense partial Steiner system so that the sums of ranks of the elements in each block are as equal as possible. By developing necessary conditions in terms of independent sets, we demonstrate that certain Steiner systems must have a much larger difference between the largest and smallest block sums than is dictated by an elementary lower bound. In contrast, we also show that certain dense partial S ( t , t + 1 , v ) designs can be labeled to realize the elementary lower bound. Furthermore, we prove that for every admissible order v , there is a Steiner triple system ( S (2, 3,  v )) whose largest difference in block sums is within an additive constant of the lower bound.</description><identifier>ISSN: 0925-1022</identifier><identifier>EISSN: 1573-7586</identifier><identifier>DOI: 10.1007/s10623-020-00786-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Coding and Information Theory ; Combinatorial analysis ; Computer Science ; Cryptology ; Discrete Mathematics in Computer Science ; Lower bounds ; Storage systems ; Storage units ; Sums</subject><ispartof>Designs, codes, and cryptography, 2020-11, Vol.88 (11), p.2361-2376</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f9c50959a0de763ae7d6a925d2ab97f60fde96ff751488ac5236087f30bf23e63</citedby><cites>FETCH-LOGICAL-c319t-f9c50959a0de763ae7d6a925d2ab97f60fde96ff751488ac5236087f30bf23e63</cites><orcidid>0000-0002-3104-9515</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Chee, Yeow Meng</creatorcontrib><creatorcontrib>Colbourn, Charles J.</creatorcontrib><creatorcontrib>Dau, Hoang</creatorcontrib><creatorcontrib>Gabrys, Ryan</creatorcontrib><creatorcontrib>Ling, Alan C. H.</creatorcontrib><creatorcontrib>Lusi, Dylan</creatorcontrib><creatorcontrib>Milenkovic, Olgica</creatorcontrib><title>Access balancing in storage systems by labeling partial Steiner systems</title><title>Designs, codes, and cryptography</title><addtitle>Des. Codes Cryptogr</addtitle><description>Storage architectures ranging from minimum bandwidth regenerating encoded distributed storage systems to declustered-parity RAIDs can employ dense partial Steiner systems to support fast reads, writes, and recovery of failed storage units. To enhance performance, popularities of the data items should be taken into account to make frequencies of accesses to storage units as uniform as possible. A combinatorial model ranks items by popularity and assigns data items to elements in a dense partial Steiner system so that the sums of ranks of the elements in each block are as equal as possible. By developing necessary conditions in terms of independent sets, we demonstrate that certain Steiner systems must have a much larger difference between the largest and smallest block sums than is dictated by an elementary lower bound. In contrast, we also show that certain dense partial S ( t , t + 1 , v ) designs can be labeled to realize the elementary lower bound. Furthermore, we prove that for every admissible order v , there is a Steiner triple system ( S (2, 3,  v )) whose largest difference in block sums is within an additive constant of the lower bound.</description><subject>Coding and Information Theory</subject><subject>Combinatorial analysis</subject><subject>Computer Science</subject><subject>Cryptology</subject><subject>Discrete Mathematics in Computer Science</subject><subject>Lower bounds</subject><subject>Storage systems</subject><subject>Storage units</subject><subject>Sums</subject><issn>0925-1022</issn><issn>1573-7586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWKt_wNOC5-gkaZLNsRStQsGDeg7Z7KRs2e7WZHtof72pq3jzNAzve2-GR8gtg3sGoB8SA8UFBQ40r6WixzMyYVILqmWpzskEDJeUAeeX5CqlDQAwAXxClnPvMaWicq3rfNOti6Yr0tBHt8YiHdKA2yweitZV2J7knYtD49ribcCmw_jLXJOL4NqENz9zSj6eHt8Xz3T1unxZzFfUC2YGGoyXYKRxUKNWwqGulcuv1dxVRgcFoUajQtCSzcrSecmFglIHAVXgApWYkrsxdxf7zz2mwW76fezySctnkimhDReZ4iPlY59SxGB3sdm6eLAM7KkwOxZmc2H2uzB7zCYxmlKGuzXGv-h_XF8QiG6l</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Chee, Yeow Meng</creator><creator>Colbourn, Charles J.</creator><creator>Dau, Hoang</creator><creator>Gabrys, Ryan</creator><creator>Ling, Alan C. H.</creator><creator>Lusi, Dylan</creator><creator>Milenkovic, Olgica</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3104-9515</orcidid></search><sort><creationdate>20201101</creationdate><title>Access balancing in storage systems by labeling partial Steiner systems</title><author>Chee, Yeow Meng ; Colbourn, Charles J. ; Dau, Hoang ; Gabrys, Ryan ; Ling, Alan C. H. ; Lusi, Dylan ; Milenkovic, Olgica</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f9c50959a0de763ae7d6a925d2ab97f60fde96ff751488ac5236087f30bf23e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Coding and Information Theory</topic><topic>Combinatorial analysis</topic><topic>Computer Science</topic><topic>Cryptology</topic><topic>Discrete Mathematics in Computer Science</topic><topic>Lower bounds</topic><topic>Storage systems</topic><topic>Storage units</topic><topic>Sums</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chee, Yeow Meng</creatorcontrib><creatorcontrib>Colbourn, Charles J.</creatorcontrib><creatorcontrib>Dau, Hoang</creatorcontrib><creatorcontrib>Gabrys, Ryan</creatorcontrib><creatorcontrib>Ling, Alan C. H.</creatorcontrib><creatorcontrib>Lusi, Dylan</creatorcontrib><creatorcontrib>Milenkovic, Olgica</creatorcontrib><collection>CrossRef</collection><jtitle>Designs, codes, and cryptography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chee, Yeow Meng</au><au>Colbourn, Charles J.</au><au>Dau, Hoang</au><au>Gabrys, Ryan</au><au>Ling, Alan C. H.</au><au>Lusi, Dylan</au><au>Milenkovic, Olgica</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Access balancing in storage systems by labeling partial Steiner systems</atitle><jtitle>Designs, codes, and cryptography</jtitle><stitle>Des. Codes Cryptogr</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>88</volume><issue>11</issue><spage>2361</spage><epage>2376</epage><pages>2361-2376</pages><issn>0925-1022</issn><eissn>1573-7586</eissn><abstract>Storage architectures ranging from minimum bandwidth regenerating encoded distributed storage systems to declustered-parity RAIDs can employ dense partial Steiner systems to support fast reads, writes, and recovery of failed storage units. To enhance performance, popularities of the data items should be taken into account to make frequencies of accesses to storage units as uniform as possible. A combinatorial model ranks items by popularity and assigns data items to elements in a dense partial Steiner system so that the sums of ranks of the elements in each block are as equal as possible. By developing necessary conditions in terms of independent sets, we demonstrate that certain Steiner systems must have a much larger difference between the largest and smallest block sums than is dictated by an elementary lower bound. In contrast, we also show that certain dense partial S ( t , t + 1 , v ) designs can be labeled to realize the elementary lower bound. Furthermore, we prove that for every admissible order v , there is a Steiner triple system ( S (2, 3,  v )) whose largest difference in block sums is within an additive constant of the lower bound.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10623-020-00786-z</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3104-9515</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0925-1022
ispartof Designs, codes, and cryptography, 2020-11, Vol.88 (11), p.2361-2376
issn 0925-1022
1573-7586
language eng
recordid cdi_proquest_journals_2451637923
source Springer Nature
subjects Coding and Information Theory
Combinatorial analysis
Computer Science
Cryptology
Discrete Mathematics in Computer Science
Lower bounds
Storage systems
Storage units
Sums
title Access balancing in storage systems by labeling partial Steiner systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T18%3A37%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Access%20balancing%20in%20storage%20systems%20by%20labeling%20partial%20Steiner%20systems&rft.jtitle=Designs,%20codes,%20and%20cryptography&rft.au=Chee,%20Yeow%20Meng&rft.date=2020-11-01&rft.volume=88&rft.issue=11&rft.spage=2361&rft.epage=2376&rft.pages=2361-2376&rft.issn=0925-1022&rft.eissn=1573-7586&rft_id=info:doi/10.1007/s10623-020-00786-z&rft_dat=%3Cproquest_cross%3E2451637923%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-f9c50959a0de763ae7d6a925d2ab97f60fde96ff751488ac5236087f30bf23e63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2451637923&rft_id=info:pmid/&rfr_iscdi=true