Loading…

Language independent recommender agent

This paper presents a new ‘Language Independent Recommender Agent’ (LIRA), using information distributed over any text-source pair on the Web about candidate items. While existing review-based recommendation systems learn the features of candidate items and users’ preferences, they do not handle var...

Full description

Saved in:
Bibliographic Details
Published in:Knowledge engineering review 2018-01, Vol.33, Article e15
Main Authors: Yucel, Osman, Sen, Sandip
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c247t-dcafd94b016e27357148d6451f2b8a2eea8d6d14dcfd878ceb4575bafe3e63513
cites cdi_FETCH-LOGICAL-c247t-dcafd94b016e27357148d6451f2b8a2eea8d6d14dcfd878ceb4575bafe3e63513
container_end_page
container_issue
container_start_page
container_title Knowledge engineering review
container_volume 33
creator Yucel, Osman
Sen, Sandip
description This paper presents a new ‘Language Independent Recommender Agent’ (LIRA), using information distributed over any text-source pair on the Web about candidate items. While existing review-based recommendation systems learn the features of candidate items and users’ preferences, they do not handle varying perspectives of users on those features. LIRA constructs agents for each user, which run regression algorithms on texts from different sources and builds trust relations. The key advantages of LIRA can be listed as: LIRA does not require reviews from target users, LIRA calculates trust values based on prediction accuracy instead of social connections or rating similarity, LIRA does not require the reviews to come from the same community or peer user group. Since ratings of the reviewers are not necessary for LIRA, we can collect and use reviews from different sources (web pages, professional critiques), as long as we know the corresponding item and source of that text. Since LIRA does not combine text from different sources, texts from different sources are not required to be in the same language. LIRA can utilize text from multiple languages, as long as sources are consistent with their language usage.
doi_str_mv 10.1017/S0269888918000218
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2451842019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0269888918000218</cupid><sourcerecordid>2451842019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-dcafd94b016e27357148d6451f2b8a2eea8d6d14dcfd878ceb4575bafe3e63513</originalsourceid><addsrcrecordid>eNp1UMlKxEAQbUTBOPoB3gKCt2hVL-nOUQYdhYAH9Rw66UrIYBY7ycG_t8MMeBAvVTzeBo-xa4Q7BNT3b8DTzBiToQEAjuaERSjTLAlQnbJopZOVP2cX07QHQIEgInab275ZbENx2zsaKZx-jj1VQ9etwMeB6-dLdlbbz4mujn_DPp4e37fPSf66e9k-5EnFpZ4TV9naZbIETIlroTRK41KpsOalsZzIBuhQuqp2RpuKSqm0Km1NglKhUGzYzSF39MPXQtNc7IfF96Gy4CHGSA6YBRUeVJUfpslTXYy-7az_LhCKdY7izxzBI44e25W-dQ39Rv_v-gEmnGDB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451842019</pqid></control><display><type>article</type><title>Language independent recommender agent</title><source>ABI/INFORM Global (ProQuest)</source><source>Cambridge University Press</source><creator>Yucel, Osman ; Sen, Sandip</creator><creatorcontrib>Yucel, Osman ; Sen, Sandip</creatorcontrib><description>This paper presents a new ‘Language Independent Recommender Agent’ (LIRA), using information distributed over any text-source pair on the Web about candidate items. While existing review-based recommendation systems learn the features of candidate items and users’ preferences, they do not handle varying perspectives of users on those features. LIRA constructs agents for each user, which run regression algorithms on texts from different sources and builds trust relations. The key advantages of LIRA can be listed as: LIRA does not require reviews from target users, LIRA calculates trust values based on prediction accuracy instead of social connections or rating similarity, LIRA does not require the reviews to come from the same community or peer user group. Since ratings of the reviewers are not necessary for LIRA, we can collect and use reviews from different sources (web pages, professional critiques), as long as we know the corresponding item and source of that text. Since LIRA does not combine text from different sources, texts from different sources are not required to be in the same language. LIRA can utilize text from multiple languages, as long as sources are consistent with their language usage.</description><identifier>ISSN: 0269-8889</identifier><identifier>EISSN: 1469-8005</identifier><identifier>DOI: 10.1017/S0269888918000218</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Adaptive and Learning Agents ; Algorithms ; Hotels &amp; motels ; Language ; Random variables ; Ratings &amp; rankings ; Recommender systems ; Texts ; Trustworthiness ; User groups ; User requirements ; Websites</subject><ispartof>Knowledge engineering review, 2018-01, Vol.33, Article e15</ispartof><rights>Cambridge University Press, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c247t-dcafd94b016e27357148d6451f2b8a2eea8d6d14dcfd878ceb4575bafe3e63513</citedby><cites>FETCH-LOGICAL-c247t-dcafd94b016e27357148d6451f2b8a2eea8d6d14dcfd878ceb4575bafe3e63513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2451842019?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363,72960</link.rule.ids></links><search><creatorcontrib>Yucel, Osman</creatorcontrib><creatorcontrib>Sen, Sandip</creatorcontrib><title>Language independent recommender agent</title><title>Knowledge engineering review</title><addtitle>The Knowledge Engineering Review</addtitle><description>This paper presents a new ‘Language Independent Recommender Agent’ (LIRA), using information distributed over any text-source pair on the Web about candidate items. While existing review-based recommendation systems learn the features of candidate items and users’ preferences, they do not handle varying perspectives of users on those features. LIRA constructs agents for each user, which run regression algorithms on texts from different sources and builds trust relations. The key advantages of LIRA can be listed as: LIRA does not require reviews from target users, LIRA calculates trust values based on prediction accuracy instead of social connections or rating similarity, LIRA does not require the reviews to come from the same community or peer user group. Since ratings of the reviewers are not necessary for LIRA, we can collect and use reviews from different sources (web pages, professional critiques), as long as we know the corresponding item and source of that text. Since LIRA does not combine text from different sources, texts from different sources are not required to be in the same language. LIRA can utilize text from multiple languages, as long as sources are consistent with their language usage.</description><subject>Adaptive and Learning Agents</subject><subject>Algorithms</subject><subject>Hotels &amp; motels</subject><subject>Language</subject><subject>Random variables</subject><subject>Ratings &amp; rankings</subject><subject>Recommender systems</subject><subject>Texts</subject><subject>Trustworthiness</subject><subject>User groups</subject><subject>User requirements</subject><subject>Websites</subject><issn>0269-8889</issn><issn>1469-8005</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1UMlKxEAQbUTBOPoB3gKCt2hVL-nOUQYdhYAH9Rw66UrIYBY7ycG_t8MMeBAvVTzeBo-xa4Q7BNT3b8DTzBiToQEAjuaERSjTLAlQnbJopZOVP2cX07QHQIEgInab275ZbENx2zsaKZx-jj1VQ9etwMeB6-dLdlbbz4mujn_DPp4e37fPSf66e9k-5EnFpZ4TV9naZbIETIlroTRK41KpsOalsZzIBuhQuqp2RpuKSqm0Km1NglKhUGzYzSF39MPXQtNc7IfF96Gy4CHGSA6YBRUeVJUfpslTXYy-7az_LhCKdY7izxzBI44e25W-dQ39Rv_v-gEmnGDB</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Yucel, Osman</creator><creator>Sen, Sandip</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20180101</creationdate><title>Language independent recommender agent</title><author>Yucel, Osman ; Sen, Sandip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-dcafd94b016e27357148d6451f2b8a2eea8d6d14dcfd878ceb4575bafe3e63513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptive and Learning Agents</topic><topic>Algorithms</topic><topic>Hotels &amp; motels</topic><topic>Language</topic><topic>Random variables</topic><topic>Ratings &amp; rankings</topic><topic>Recommender systems</topic><topic>Texts</topic><topic>Trustworthiness</topic><topic>User groups</topic><topic>User requirements</topic><topic>Websites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yucel, Osman</creatorcontrib><creatorcontrib>Sen, Sandip</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI商业信息数据库</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>Computing Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Knowledge engineering review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yucel, Osman</au><au>Sen, Sandip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Language independent recommender agent</atitle><jtitle>Knowledge engineering review</jtitle><addtitle>The Knowledge Engineering Review</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>33</volume><artnum>e15</artnum><issn>0269-8889</issn><eissn>1469-8005</eissn><abstract>This paper presents a new ‘Language Independent Recommender Agent’ (LIRA), using information distributed over any text-source pair on the Web about candidate items. While existing review-based recommendation systems learn the features of candidate items and users’ preferences, they do not handle varying perspectives of users on those features. LIRA constructs agents for each user, which run regression algorithms on texts from different sources and builds trust relations. The key advantages of LIRA can be listed as: LIRA does not require reviews from target users, LIRA calculates trust values based on prediction accuracy instead of social connections or rating similarity, LIRA does not require the reviews to come from the same community or peer user group. Since ratings of the reviewers are not necessary for LIRA, we can collect and use reviews from different sources (web pages, professional critiques), as long as we know the corresponding item and source of that text. Since LIRA does not combine text from different sources, texts from different sources are not required to be in the same language. LIRA can utilize text from multiple languages, as long as sources are consistent with their language usage.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0269888918000218</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0269-8889
ispartof Knowledge engineering review, 2018-01, Vol.33, Article e15
issn 0269-8889
1469-8005
language eng
recordid cdi_proquest_journals_2451842019
source ABI/INFORM Global (ProQuest); Cambridge University Press
subjects Adaptive and Learning Agents
Algorithms
Hotels & motels
Language
Random variables
Ratings & rankings
Recommender systems
Texts
Trustworthiness
User groups
User requirements
Websites
title Language independent recommender agent
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A12%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Language%20independent%20recommender%20agent&rft.jtitle=Knowledge%20engineering%20review&rft.au=Yucel,%20Osman&rft.date=2018-01-01&rft.volume=33&rft.artnum=e15&rft.issn=0269-8889&rft.eissn=1469-8005&rft_id=info:doi/10.1017/S0269888918000218&rft_dat=%3Cproquest_cross%3E2451842019%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c247t-dcafd94b016e27357148d6451f2b8a2eea8d6d14dcfd878ceb4575bafe3e63513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2451842019&rft_id=info:pmid/&rft_cupid=10_1017_S0269888918000218&rfr_iscdi=true