Loading…
Language independent recommender agent
This paper presents a new ‘Language Independent Recommender Agent’ (LIRA), using information distributed over any text-source pair on the Web about candidate items. While existing review-based recommendation systems learn the features of candidate items and users’ preferences, they do not handle var...
Saved in:
Published in: | Knowledge engineering review 2018-01, Vol.33, Article e15 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c247t-dcafd94b016e27357148d6451f2b8a2eea8d6d14dcfd878ceb4575bafe3e63513 |
---|---|
cites | cdi_FETCH-LOGICAL-c247t-dcafd94b016e27357148d6451f2b8a2eea8d6d14dcfd878ceb4575bafe3e63513 |
container_end_page | |
container_issue | |
container_start_page | |
container_title | Knowledge engineering review |
container_volume | 33 |
creator | Yucel, Osman Sen, Sandip |
description | This paper presents a new ‘Language Independent Recommender Agent’ (LIRA), using information distributed over any text-source pair on the Web about candidate items. While existing review-based recommendation systems learn the features of candidate items and users’ preferences, they do not handle varying perspectives of users on those features. LIRA constructs agents for each user, which run regression algorithms on texts from different sources and builds trust relations. The key advantages of LIRA can be listed as: LIRA does not require reviews from target users, LIRA calculates trust values based on prediction accuracy instead of social connections or rating similarity, LIRA does not require the reviews to come from the same community or peer user group. Since ratings of the reviewers are not necessary for LIRA, we can collect and use reviews from different sources (web pages, professional critiques), as long as we know the corresponding item and source of that text. Since LIRA does not combine text from different sources, texts from different sources are not required to be in the same language. LIRA can utilize text from multiple languages, as long as sources are consistent with their language usage. |
doi_str_mv | 10.1017/S0269888918000218 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2451842019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0269888918000218</cupid><sourcerecordid>2451842019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-dcafd94b016e27357148d6451f2b8a2eea8d6d14dcfd878ceb4575bafe3e63513</originalsourceid><addsrcrecordid>eNp1UMlKxEAQbUTBOPoB3gKCt2hVL-nOUQYdhYAH9Rw66UrIYBY7ycG_t8MMeBAvVTzeBo-xa4Q7BNT3b8DTzBiToQEAjuaERSjTLAlQnbJopZOVP2cX07QHQIEgInab275ZbENx2zsaKZx-jj1VQ9etwMeB6-dLdlbbz4mujn_DPp4e37fPSf66e9k-5EnFpZ4TV9naZbIETIlroTRK41KpsOalsZzIBuhQuqp2RpuKSqm0Km1NglKhUGzYzSF39MPXQtNc7IfF96Gy4CHGSA6YBRUeVJUfpslTXYy-7az_LhCKdY7izxzBI44e25W-dQ39Rv_v-gEmnGDB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451842019</pqid></control><display><type>article</type><title>Language independent recommender agent</title><source>ABI/INFORM Global (ProQuest)</source><source>Cambridge University Press</source><creator>Yucel, Osman ; Sen, Sandip</creator><creatorcontrib>Yucel, Osman ; Sen, Sandip</creatorcontrib><description>This paper presents a new ‘Language Independent Recommender Agent’ (LIRA), using information distributed over any text-source pair on the Web about candidate items. While existing review-based recommendation systems learn the features of candidate items and users’ preferences, they do not handle varying perspectives of users on those features. LIRA constructs agents for each user, which run regression algorithms on texts from different sources and builds trust relations. The key advantages of LIRA can be listed as: LIRA does not require reviews from target users, LIRA calculates trust values based on prediction accuracy instead of social connections or rating similarity, LIRA does not require the reviews to come from the same community or peer user group. Since ratings of the reviewers are not necessary for LIRA, we can collect and use reviews from different sources (web pages, professional critiques), as long as we know the corresponding item and source of that text. Since LIRA does not combine text from different sources, texts from different sources are not required to be in the same language. LIRA can utilize text from multiple languages, as long as sources are consistent with their language usage.</description><identifier>ISSN: 0269-8889</identifier><identifier>EISSN: 1469-8005</identifier><identifier>DOI: 10.1017/S0269888918000218</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Adaptive and Learning Agents ; Algorithms ; Hotels & motels ; Language ; Random variables ; Ratings & rankings ; Recommender systems ; Texts ; Trustworthiness ; User groups ; User requirements ; Websites</subject><ispartof>Knowledge engineering review, 2018-01, Vol.33, Article e15</ispartof><rights>Cambridge University Press, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c247t-dcafd94b016e27357148d6451f2b8a2eea8d6d14dcfd878ceb4575bafe3e63513</citedby><cites>FETCH-LOGICAL-c247t-dcafd94b016e27357148d6451f2b8a2eea8d6d14dcfd878ceb4575bafe3e63513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2451842019?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363,72960</link.rule.ids></links><search><creatorcontrib>Yucel, Osman</creatorcontrib><creatorcontrib>Sen, Sandip</creatorcontrib><title>Language independent recommender agent</title><title>Knowledge engineering review</title><addtitle>The Knowledge Engineering Review</addtitle><description>This paper presents a new ‘Language Independent Recommender Agent’ (LIRA), using information distributed over any text-source pair on the Web about candidate items. While existing review-based recommendation systems learn the features of candidate items and users’ preferences, they do not handle varying perspectives of users on those features. LIRA constructs agents for each user, which run regression algorithms on texts from different sources and builds trust relations. The key advantages of LIRA can be listed as: LIRA does not require reviews from target users, LIRA calculates trust values based on prediction accuracy instead of social connections or rating similarity, LIRA does not require the reviews to come from the same community or peer user group. Since ratings of the reviewers are not necessary for LIRA, we can collect and use reviews from different sources (web pages, professional critiques), as long as we know the corresponding item and source of that text. Since LIRA does not combine text from different sources, texts from different sources are not required to be in the same language. LIRA can utilize text from multiple languages, as long as sources are consistent with their language usage.</description><subject>Adaptive and Learning Agents</subject><subject>Algorithms</subject><subject>Hotels & motels</subject><subject>Language</subject><subject>Random variables</subject><subject>Ratings & rankings</subject><subject>Recommender systems</subject><subject>Texts</subject><subject>Trustworthiness</subject><subject>User groups</subject><subject>User requirements</subject><subject>Websites</subject><issn>0269-8889</issn><issn>1469-8005</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1UMlKxEAQbUTBOPoB3gKCt2hVL-nOUQYdhYAH9Rw66UrIYBY7ycG_t8MMeBAvVTzeBo-xa4Q7BNT3b8DTzBiToQEAjuaERSjTLAlQnbJopZOVP2cX07QHQIEgInab275ZbENx2zsaKZx-jj1VQ9etwMeB6-dLdlbbz4mujn_DPp4e37fPSf66e9k-5EnFpZ4TV9naZbIETIlroTRK41KpsOalsZzIBuhQuqp2RpuKSqm0Km1NglKhUGzYzSF39MPXQtNc7IfF96Gy4CHGSA6YBRUeVJUfpslTXYy-7az_LhCKdY7izxzBI44e25W-dQ39Rv_v-gEmnGDB</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Yucel, Osman</creator><creator>Sen, Sandip</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20180101</creationdate><title>Language independent recommender agent</title><author>Yucel, Osman ; Sen, Sandip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-dcafd94b016e27357148d6451f2b8a2eea8d6d14dcfd878ceb4575bafe3e63513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptive and Learning Agents</topic><topic>Algorithms</topic><topic>Hotels & motels</topic><topic>Language</topic><topic>Random variables</topic><topic>Ratings & rankings</topic><topic>Recommender systems</topic><topic>Texts</topic><topic>Trustworthiness</topic><topic>User groups</topic><topic>User requirements</topic><topic>Websites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yucel, Osman</creatorcontrib><creatorcontrib>Sen, Sandip</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI商业信息数据库</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>Computing Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Knowledge engineering review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yucel, Osman</au><au>Sen, Sandip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Language independent recommender agent</atitle><jtitle>Knowledge engineering review</jtitle><addtitle>The Knowledge Engineering Review</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>33</volume><artnum>e15</artnum><issn>0269-8889</issn><eissn>1469-8005</eissn><abstract>This paper presents a new ‘Language Independent Recommender Agent’ (LIRA), using information distributed over any text-source pair on the Web about candidate items. While existing review-based recommendation systems learn the features of candidate items and users’ preferences, they do not handle varying perspectives of users on those features. LIRA constructs agents for each user, which run regression algorithms on texts from different sources and builds trust relations. The key advantages of LIRA can be listed as: LIRA does not require reviews from target users, LIRA calculates trust values based on prediction accuracy instead of social connections or rating similarity, LIRA does not require the reviews to come from the same community or peer user group. Since ratings of the reviewers are not necessary for LIRA, we can collect and use reviews from different sources (web pages, professional critiques), as long as we know the corresponding item and source of that text. Since LIRA does not combine text from different sources, texts from different sources are not required to be in the same language. LIRA can utilize text from multiple languages, as long as sources are consistent with their language usage.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0269888918000218</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0269-8889 |
ispartof | Knowledge engineering review, 2018-01, Vol.33, Article e15 |
issn | 0269-8889 1469-8005 |
language | eng |
recordid | cdi_proquest_journals_2451842019 |
source | ABI/INFORM Global (ProQuest); Cambridge University Press |
subjects | Adaptive and Learning Agents Algorithms Hotels & motels Language Random variables Ratings & rankings Recommender systems Texts Trustworthiness User groups User requirements Websites |
title | Language independent recommender agent |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A12%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Language%20independent%20recommender%20agent&rft.jtitle=Knowledge%20engineering%20review&rft.au=Yucel,%20Osman&rft.date=2018-01-01&rft.volume=33&rft.artnum=e15&rft.issn=0269-8889&rft.eissn=1469-8005&rft_id=info:doi/10.1017/S0269888918000218&rft_dat=%3Cproquest_cross%3E2451842019%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c247t-dcafd94b016e27357148d6451f2b8a2eea8d6d14dcfd878ceb4575bafe3e63513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2451842019&rft_id=info:pmid/&rft_cupid=10_1017_S0269888918000218&rfr_iscdi=true |