Loading…

Generalized mapped nodal Laguerre spectral collocation method for Volterra delay integro-differential equations with noncompact kernels

This paper is devoted to solve a class of weakly singular Volterra integro-differential equations with noncompact kernels. Since the solution of such these models may has singularities, so the classical spectral methods lose their high accuracy for solving them. Innovation of this article is that, w...

Full description

Saved in:
Bibliographic Details
Published in:Computational & applied mathematics 2020-12, Vol.39 (4), Article 298
Main Authors: Tang, Zhuyan, Tohidi, Emran, He, Fuli
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-b8658d23c43a3178daefe82c24d9460a9ce6df5a8ff8854efe084a1f6f0375893
cites cdi_FETCH-LOGICAL-c319t-b8658d23c43a3178daefe82c24d9460a9ce6df5a8ff8854efe084a1f6f0375893
container_end_page
container_issue 4
container_start_page
container_title Computational & applied mathematics
container_volume 39
creator Tang, Zhuyan
Tohidi, Emran
He, Fuli
description This paper is devoted to solve a class of weakly singular Volterra integro-differential equations with noncompact kernels. Since the solution of such these models may has singularities, so the classical spectral methods lose their high accuracy for solving them. Innovation of this article is that, we use the generalized mapped nodal Laguerre spectral collocation method to deal with the singularity. Therefore, we can make good use of the advantages of the mapped Laguerre functions. The best advantage of the proposed method is its robustness for solving problems that have singularity near the left (or right) boundary of the computational interval. We present the construction and analysis of the generalized log orthogonal Laguerre functions collocation method in this paper and some numerical examples with nonsmooth solutions are included to show the efficiency of the suggested numerical scheme with respect to the classical Jacobi spectral methods.
doi_str_mv 10.1007/s40314-020-01352-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2452108415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2452108415</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b8658d23c43a3178daefe82c24d9460a9ce6df5a8ff8854efe084a1f6f0375893</originalsourceid><addsrcrecordid>eNp9kM1KAzEURoMoWKsv4CrgOpq_maZLEa1CwY26DTG5qaPTZEwySH0BX9vYCu5c3cU957vcD6FTRs8ZpbOLLKlgklBOCWWi4WSzhyZM0RmhgvJ9NOFcKCJaKg7RUc6vlIoZk3KCvhYQIJm--wSH12YY6gjRmR4vzWqElADnAWypCLax76M1pYsBr6G8RId9TPgp9qWCBjvozQZ3ocAqReI67yFBKF1V4X3cehl_dOWlXgg2rgdjC36DFKDPx-jAmz7Dye-coseb64erW7K8X9xdXS6JFWxeyLNqG-W4sFIYwWbKGfCguOXSzWVLzdxC63xjlPdKNbIuqZKG-dbXhxs1F1N0tssdUnwfIRf9GscU6knNZcNZxVlTKb6jbIo5J_B6SN3apI1mVP8UrneF61q43hauN1USOylXOKwg_UX_Y30DqE6HzQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2452108415</pqid></control><display><type>article</type><title>Generalized mapped nodal Laguerre spectral collocation method for Volterra delay integro-differential equations with noncompact kernels</title><source>Springer Link</source><creator>Tang, Zhuyan ; Tohidi, Emran ; He, Fuli</creator><creatorcontrib>Tang, Zhuyan ; Tohidi, Emran ; He, Fuli</creatorcontrib><description>This paper is devoted to solve a class of weakly singular Volterra integro-differential equations with noncompact kernels. Since the solution of such these models may has singularities, so the classical spectral methods lose their high accuracy for solving them. Innovation of this article is that, we use the generalized mapped nodal Laguerre spectral collocation method to deal with the singularity. Therefore, we can make good use of the advantages of the mapped Laguerre functions. The best advantage of the proposed method is its robustness for solving problems that have singularity near the left (or right) boundary of the computational interval. We present the construction and analysis of the generalized log orthogonal Laguerre functions collocation method in this paper and some numerical examples with nonsmooth solutions are included to show the efficiency of the suggested numerical scheme with respect to the classical Jacobi spectral methods.</description><identifier>ISSN: 2238-3603</identifier><identifier>EISSN: 1807-0302</identifier><identifier>DOI: 10.1007/s40314-020-01352-y</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Applied physics ; Collocation methods ; Computational mathematics ; Computational Mathematics and Numerical Analysis ; Differential equations ; Kernels ; Laguerre functions ; Mathematical Applications in Computer Science ; Mathematical Applications in the Physical Sciences ; Mathematics ; Mathematics and Statistics ; Robustness (mathematics) ; Singularity (mathematics) ; Spectra ; Spectral methods</subject><ispartof>Computational &amp; applied mathematics, 2020-12, Vol.39 (4), Article 298</ispartof><rights>SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2020</rights><rights>SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b8658d23c43a3178daefe82c24d9460a9ce6df5a8ff8854efe084a1f6f0375893</citedby><cites>FETCH-LOGICAL-c319t-b8658d23c43a3178daefe82c24d9460a9ce6df5a8ff8854efe084a1f6f0375893</cites><orcidid>0000-0002-9395-545X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Tang, Zhuyan</creatorcontrib><creatorcontrib>Tohidi, Emran</creatorcontrib><creatorcontrib>He, Fuli</creatorcontrib><title>Generalized mapped nodal Laguerre spectral collocation method for Volterra delay integro-differential equations with noncompact kernels</title><title>Computational &amp; applied mathematics</title><addtitle>Comp. Appl. Math</addtitle><description>This paper is devoted to solve a class of weakly singular Volterra integro-differential equations with noncompact kernels. Since the solution of such these models may has singularities, so the classical spectral methods lose their high accuracy for solving them. Innovation of this article is that, we use the generalized mapped nodal Laguerre spectral collocation method to deal with the singularity. Therefore, we can make good use of the advantages of the mapped Laguerre functions. The best advantage of the proposed method is its robustness for solving problems that have singularity near the left (or right) boundary of the computational interval. We present the construction and analysis of the generalized log orthogonal Laguerre functions collocation method in this paper and some numerical examples with nonsmooth solutions are included to show the efficiency of the suggested numerical scheme with respect to the classical Jacobi spectral methods.</description><subject>Applications of Mathematics</subject><subject>Applied physics</subject><subject>Collocation methods</subject><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Differential equations</subject><subject>Kernels</subject><subject>Laguerre functions</subject><subject>Mathematical Applications in Computer Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Robustness (mathematics)</subject><subject>Singularity (mathematics)</subject><subject>Spectra</subject><subject>Spectral methods</subject><issn>2238-3603</issn><issn>1807-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEURoMoWKsv4CrgOpq_maZLEa1CwY26DTG5qaPTZEwySH0BX9vYCu5c3cU957vcD6FTRs8ZpbOLLKlgklBOCWWi4WSzhyZM0RmhgvJ9NOFcKCJaKg7RUc6vlIoZk3KCvhYQIJm--wSH12YY6gjRmR4vzWqElADnAWypCLax76M1pYsBr6G8RId9TPgp9qWCBjvozQZ3ocAqReI67yFBKF1V4X3cehl_dOWlXgg2rgdjC36DFKDPx-jAmz7Dye-coseb64erW7K8X9xdXS6JFWxeyLNqG-W4sFIYwWbKGfCguOXSzWVLzdxC63xjlPdKNbIuqZKG-dbXhxs1F1N0tssdUnwfIRf9GscU6knNZcNZxVlTKb6jbIo5J_B6SN3apI1mVP8UrneF61q43hauN1USOylXOKwg_UX_Y30DqE6HzQ</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Tang, Zhuyan</creator><creator>Tohidi, Emran</creator><creator>He, Fuli</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9395-545X</orcidid></search><sort><creationdate>20201201</creationdate><title>Generalized mapped nodal Laguerre spectral collocation method for Volterra delay integro-differential equations with noncompact kernels</title><author>Tang, Zhuyan ; Tohidi, Emran ; He, Fuli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b8658d23c43a3178daefe82c24d9460a9ce6df5a8ff8854efe084a1f6f0375893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applications of Mathematics</topic><topic>Applied physics</topic><topic>Collocation methods</topic><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Differential equations</topic><topic>Kernels</topic><topic>Laguerre functions</topic><topic>Mathematical Applications in Computer Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Robustness (mathematics)</topic><topic>Singularity (mathematics)</topic><topic>Spectra</topic><topic>Spectral methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Zhuyan</creatorcontrib><creatorcontrib>Tohidi, Emran</creatorcontrib><creatorcontrib>He, Fuli</creatorcontrib><collection>CrossRef</collection><jtitle>Computational &amp; applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Zhuyan</au><au>Tohidi, Emran</au><au>He, Fuli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized mapped nodal Laguerre spectral collocation method for Volterra delay integro-differential equations with noncompact kernels</atitle><jtitle>Computational &amp; applied mathematics</jtitle><stitle>Comp. Appl. Math</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>39</volume><issue>4</issue><artnum>298</artnum><issn>2238-3603</issn><eissn>1807-0302</eissn><abstract>This paper is devoted to solve a class of weakly singular Volterra integro-differential equations with noncompact kernels. Since the solution of such these models may has singularities, so the classical spectral methods lose their high accuracy for solving them. Innovation of this article is that, we use the generalized mapped nodal Laguerre spectral collocation method to deal with the singularity. Therefore, we can make good use of the advantages of the mapped Laguerre functions. The best advantage of the proposed method is its robustness for solving problems that have singularity near the left (or right) boundary of the computational interval. We present the construction and analysis of the generalized log orthogonal Laguerre functions collocation method in this paper and some numerical examples with nonsmooth solutions are included to show the efficiency of the suggested numerical scheme with respect to the classical Jacobi spectral methods.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40314-020-01352-y</doi><orcidid>https://orcid.org/0000-0002-9395-545X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2238-3603
ispartof Computational & applied mathematics, 2020-12, Vol.39 (4), Article 298
issn 2238-3603
1807-0302
language eng
recordid cdi_proquest_journals_2452108415
source Springer Link
subjects Applications of Mathematics
Applied physics
Collocation methods
Computational mathematics
Computational Mathematics and Numerical Analysis
Differential equations
Kernels
Laguerre functions
Mathematical Applications in Computer Science
Mathematical Applications in the Physical Sciences
Mathematics
Mathematics and Statistics
Robustness (mathematics)
Singularity (mathematics)
Spectra
Spectral methods
title Generalized mapped nodal Laguerre spectral collocation method for Volterra delay integro-differential equations with noncompact kernels
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T05%3A59%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20mapped%20nodal%20Laguerre%20spectral%20collocation%20method%20for%20Volterra%20delay%20integro-differential%20equations%20with%20noncompact%20kernels&rft.jtitle=Computational%20&%20applied%20mathematics&rft.au=Tang,%20Zhuyan&rft.date=2020-12-01&rft.volume=39&rft.issue=4&rft.artnum=298&rft.issn=2238-3603&rft.eissn=1807-0302&rft_id=info:doi/10.1007/s40314-020-01352-y&rft_dat=%3Cproquest_cross%3E2452108415%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-b8658d23c43a3178daefe82c24d9460a9ce6df5a8ff8854efe084a1f6f0375893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2452108415&rft_id=info:pmid/&rfr_iscdi=true