Loading…

Influence of tantalum's crystal phase growth on the microstructural, electrical and mechanical properties of sputter-deposited tantalum thin film layer

High melting point refractory tantalum (Ta) metal is frequently grown into thin film layer for many applications in biomedical implants, microelectronic devices and micro-level mechanical systems. Tantalum growth mechanism is still in debate and the inconsistent crystal phase outcome has puzzled man...

Full description

Saved in:
Bibliographic Details
Published in:International journal of refractory metals & hard materials 2020-11, Vol.92, p.105314, Article 105314
Main Authors: Latif, Rhonira, Jaafar, Muhammad Fahmi, Aziz, Mohd Faizal, Zain, Ahmad Rifqi Md, Yunas, Jumril, Majlis, Burhanuddin Yeop
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c334t-b2092439421729b35708731520c9f34921850509b237bf4eaf409458794055fd3
cites cdi_FETCH-LOGICAL-c334t-b2092439421729b35708731520c9f34921850509b237bf4eaf409458794055fd3
container_end_page
container_issue
container_start_page 105314
container_title International journal of refractory metals & hard materials
container_volume 92
creator Latif, Rhonira
Jaafar, Muhammad Fahmi
Aziz, Mohd Faizal
Zain, Ahmad Rifqi Md
Yunas, Jumril
Majlis, Burhanuddin Yeop
description High melting point refractory tantalum (Ta) metal is frequently grown into thin film layer for many applications in biomedical implants, microelectronic devices and micro-level mechanical systems. Tantalum growth mechanism is still in debate and the inconsistent crystal phase outcome has puzzled many, though it is certain that the properties of the grown film are highly dependent on the formed crystal phase configuration. The microstructure, surface morphology, crystal orientation and residual stress of the sputter-deposited Ta thin films using direct current (DC) magnetron sputtering technique are studied at 0.4 Pa – 2 Pa of sputtering pressure, 100 W – 250 W of DC sputtering power on bare silicon and silicon dioxide substrate and 10 min – 50 min of sputtering duration. α-phase Ta is preferably grown at high sputtering time (high thickness) and high DC sputtering power (high growth rate). The sputtering pressure affects the thin film's microstructural porosity while the sputtering power controls the crystallisation's quality. Both sputtering pressure and power affect the generated argon plasma in the DC magnetron sputterer where α-phase Ta is preferably formed at high plasma. The presence of 3 μm silicon dioxide underlayer makes no difference compared to bare silicon substrate. Our study reveals that β-phase Ta is grown first irrespective of sputtering conditions and then transformed into α-phase Ta after reaching a certain thickness. The grown major α-phase content promotes small thin film sheet resistivity (58.9 μΩcm – 86.1 μΩcm) and is suspected to be the dominant factor that increases the compressive stress within the thin film layer and reduces the adhesion of Ta layer onto the substrate surface. The study has given a new insight in controlling the conductivity and adhesion level of Ta thin film based on the grown phase layer. •Consistent growth of β-phase tantalum at the early stage of sputtering process.•α-phase preferably formed as tantalum grows to a certain thickness.•High compressive stress and low adhesion level for tantalum with high α-phase content.
doi_str_mv 10.1016/j.ijrmhm.2020.105314
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2452119128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263436820301906</els_id><sourcerecordid>2452119128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-b2092439421729b35708731520c9f34921850509b237bf4eaf409458794055fd3</originalsourceid><addsrcrecordid>eNp9UcuO1DAQtBBIDAt_wMESBy5k8DOJL0hotcBKK3GBs-Vx2sRRXrQd0HwJv4tDEEdO_VB1VXcXIS85O3PG67fDOQ449dNZMLG3tOTqETkJwWUlDW8ekxMTtayUrNun5FlKA2OsNjU_kV_3cxg3mD3QJdDs5uzGbXqdqMdrKjlde5eAfsPlZ-7pMtPcA52ixyVl3Hze0I1vKIzgM0Zf8G7u6AS-d_OfcsVlBcwR0s6f1i1nwKqDdUkxQ_dPsfDGmYY4TnR0V8Dn5ElwY4IXf-MN-frh7svtp-rh88f72_cPlZdS5eoimBFKGiV4I8xF6oa1jeRaMG-CVEbwVjPNzEXI5hIUuKCYUbptjGJah07ekFcHb1n0-wYp22HZcC6SVigtODdctAWlDtR-d0IIdsU4ObxazuxugR3sYYHdLbCHBWXs3TEG5YIfEdAmH_dfdxHLw2y3xP8T_Ab64pLW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2452119128</pqid></control><display><type>article</type><title>Influence of tantalum's crystal phase growth on the microstructural, electrical and mechanical properties of sputter-deposited tantalum thin film layer</title><source>ScienceDirect Journals</source><creator>Latif, Rhonira ; Jaafar, Muhammad Fahmi ; Aziz, Mohd Faizal ; Zain, Ahmad Rifqi Md ; Yunas, Jumril ; Majlis, Burhanuddin Yeop</creator><creatorcontrib>Latif, Rhonira ; Jaafar, Muhammad Fahmi ; Aziz, Mohd Faizal ; Zain, Ahmad Rifqi Md ; Yunas, Jumril ; Majlis, Burhanuddin Yeop</creatorcontrib><description>High melting point refractory tantalum (Ta) metal is frequently grown into thin film layer for many applications in biomedical implants, microelectronic devices and micro-level mechanical systems. Tantalum growth mechanism is still in debate and the inconsistent crystal phase outcome has puzzled many, though it is certain that the properties of the grown film are highly dependent on the formed crystal phase configuration. The microstructure, surface morphology, crystal orientation and residual stress of the sputter-deposited Ta thin films using direct current (DC) magnetron sputtering technique are studied at 0.4 Pa – 2 Pa of sputtering pressure, 100 W – 250 W of DC sputtering power on bare silicon and silicon dioxide substrate and 10 min – 50 min of sputtering duration. α-phase Ta is preferably grown at high sputtering time (high thickness) and high DC sputtering power (high growth rate). The sputtering pressure affects the thin film's microstructural porosity while the sputtering power controls the crystallisation's quality. Both sputtering pressure and power affect the generated argon plasma in the DC magnetron sputterer where α-phase Ta is preferably formed at high plasma. The presence of 3 μm silicon dioxide underlayer makes no difference compared to bare silicon substrate. Our study reveals that β-phase Ta is grown first irrespective of sputtering conditions and then transformed into α-phase Ta after reaching a certain thickness. The grown major α-phase content promotes small thin film sheet resistivity (58.9 μΩcm – 86.1 μΩcm) and is suspected to be the dominant factor that increases the compressive stress within the thin film layer and reduces the adhesion of Ta layer onto the substrate surface. The study has given a new insight in controlling the conductivity and adhesion level of Ta thin film based on the grown phase layer. •Consistent growth of β-phase tantalum at the early stage of sputtering process.•α-phase preferably formed as tantalum grows to a certain thickness.•High compressive stress and low adhesion level for tantalum with high α-phase content.</description><identifier>ISSN: 0263-4368</identifier><identifier>EISSN: 2213-3917</identifier><identifier>DOI: 10.1016/j.ijrmhm.2020.105314</identifier><language>eng</language><publisher>Shrewsbury: Elsevier Ltd</publisher><subject>Adhesion ; Argon ; Argon plasma ; Beta phase ; Compressive properties ; Crystal growth ; Crystal phase ; Crystal structure ; Crystallization ; DC magnetron sputtering ; Direct current ; Electrical resistivity ; Magnetron sputtering ; Mechanical properties ; Mechanical systems ; Melting points ; Microstructure ; Morphology ; Phase transitions ; Porosity ; Residual stress ; Silicon ; Silicon dioxide ; Silicon substrates ; Surgical implants ; Tantalum ; Thickness ; Thin film ; Thin films ; X-ray crystallography</subject><ispartof>International journal of refractory metals &amp; hard materials, 2020-11, Vol.92, p.105314, Article 105314</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Nov 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-b2092439421729b35708731520c9f34921850509b237bf4eaf409458794055fd3</citedby><cites>FETCH-LOGICAL-c334t-b2092439421729b35708731520c9f34921850509b237bf4eaf409458794055fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Latif, Rhonira</creatorcontrib><creatorcontrib>Jaafar, Muhammad Fahmi</creatorcontrib><creatorcontrib>Aziz, Mohd Faizal</creatorcontrib><creatorcontrib>Zain, Ahmad Rifqi Md</creatorcontrib><creatorcontrib>Yunas, Jumril</creatorcontrib><creatorcontrib>Majlis, Burhanuddin Yeop</creatorcontrib><title>Influence of tantalum's crystal phase growth on the microstructural, electrical and mechanical properties of sputter-deposited tantalum thin film layer</title><title>International journal of refractory metals &amp; hard materials</title><description>High melting point refractory tantalum (Ta) metal is frequently grown into thin film layer for many applications in biomedical implants, microelectronic devices and micro-level mechanical systems. Tantalum growth mechanism is still in debate and the inconsistent crystal phase outcome has puzzled many, though it is certain that the properties of the grown film are highly dependent on the formed crystal phase configuration. The microstructure, surface morphology, crystal orientation and residual stress of the sputter-deposited Ta thin films using direct current (DC) magnetron sputtering technique are studied at 0.4 Pa – 2 Pa of sputtering pressure, 100 W – 250 W of DC sputtering power on bare silicon and silicon dioxide substrate and 10 min – 50 min of sputtering duration. α-phase Ta is preferably grown at high sputtering time (high thickness) and high DC sputtering power (high growth rate). The sputtering pressure affects the thin film's microstructural porosity while the sputtering power controls the crystallisation's quality. Both sputtering pressure and power affect the generated argon plasma in the DC magnetron sputterer where α-phase Ta is preferably formed at high plasma. The presence of 3 μm silicon dioxide underlayer makes no difference compared to bare silicon substrate. Our study reveals that β-phase Ta is grown first irrespective of sputtering conditions and then transformed into α-phase Ta after reaching a certain thickness. The grown major α-phase content promotes small thin film sheet resistivity (58.9 μΩcm – 86.1 μΩcm) and is suspected to be the dominant factor that increases the compressive stress within the thin film layer and reduces the adhesion of Ta layer onto the substrate surface. The study has given a new insight in controlling the conductivity and adhesion level of Ta thin film based on the grown phase layer. •Consistent growth of β-phase tantalum at the early stage of sputtering process.•α-phase preferably formed as tantalum grows to a certain thickness.•High compressive stress and low adhesion level for tantalum with high α-phase content.</description><subject>Adhesion</subject><subject>Argon</subject><subject>Argon plasma</subject><subject>Beta phase</subject><subject>Compressive properties</subject><subject>Crystal growth</subject><subject>Crystal phase</subject><subject>Crystal structure</subject><subject>Crystallization</subject><subject>DC magnetron sputtering</subject><subject>Direct current</subject><subject>Electrical resistivity</subject><subject>Magnetron sputtering</subject><subject>Mechanical properties</subject><subject>Mechanical systems</subject><subject>Melting points</subject><subject>Microstructure</subject><subject>Morphology</subject><subject>Phase transitions</subject><subject>Porosity</subject><subject>Residual stress</subject><subject>Silicon</subject><subject>Silicon dioxide</subject><subject>Silicon substrates</subject><subject>Surgical implants</subject><subject>Tantalum</subject><subject>Thickness</subject><subject>Thin film</subject><subject>Thin films</subject><subject>X-ray crystallography</subject><issn>0263-4368</issn><issn>2213-3917</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UcuO1DAQtBBIDAt_wMESBy5k8DOJL0hotcBKK3GBs-Vx2sRRXrQd0HwJv4tDEEdO_VB1VXcXIS85O3PG67fDOQ449dNZMLG3tOTqETkJwWUlDW8ekxMTtayUrNun5FlKA2OsNjU_kV_3cxg3mD3QJdDs5uzGbXqdqMdrKjlde5eAfsPlZ-7pMtPcA52ixyVl3Hze0I1vKIzgM0Zf8G7u6AS-d_OfcsVlBcwR0s6f1i1nwKqDdUkxQ_dPsfDGmYY4TnR0V8Dn5ElwY4IXf-MN-frh7svtp-rh88f72_cPlZdS5eoimBFKGiV4I8xF6oa1jeRaMG-CVEbwVjPNzEXI5hIUuKCYUbptjGJah07ekFcHb1n0-wYp22HZcC6SVigtODdctAWlDtR-d0IIdsU4ObxazuxugR3sYYHdLbCHBWXs3TEG5YIfEdAmH_dfdxHLw2y3xP8T_Ab64pLW</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Latif, Rhonira</creator><creator>Jaafar, Muhammad Fahmi</creator><creator>Aziz, Mohd Faizal</creator><creator>Zain, Ahmad Rifqi Md</creator><creator>Yunas, Jumril</creator><creator>Majlis, Burhanuddin Yeop</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>202011</creationdate><title>Influence of tantalum's crystal phase growth on the microstructural, electrical and mechanical properties of sputter-deposited tantalum thin film layer</title><author>Latif, Rhonira ; Jaafar, Muhammad Fahmi ; Aziz, Mohd Faizal ; Zain, Ahmad Rifqi Md ; Yunas, Jumril ; Majlis, Burhanuddin Yeop</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-b2092439421729b35708731520c9f34921850509b237bf4eaf409458794055fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adhesion</topic><topic>Argon</topic><topic>Argon plasma</topic><topic>Beta phase</topic><topic>Compressive properties</topic><topic>Crystal growth</topic><topic>Crystal phase</topic><topic>Crystal structure</topic><topic>Crystallization</topic><topic>DC magnetron sputtering</topic><topic>Direct current</topic><topic>Electrical resistivity</topic><topic>Magnetron sputtering</topic><topic>Mechanical properties</topic><topic>Mechanical systems</topic><topic>Melting points</topic><topic>Microstructure</topic><topic>Morphology</topic><topic>Phase transitions</topic><topic>Porosity</topic><topic>Residual stress</topic><topic>Silicon</topic><topic>Silicon dioxide</topic><topic>Silicon substrates</topic><topic>Surgical implants</topic><topic>Tantalum</topic><topic>Thickness</topic><topic>Thin film</topic><topic>Thin films</topic><topic>X-ray crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Latif, Rhonira</creatorcontrib><creatorcontrib>Jaafar, Muhammad Fahmi</creatorcontrib><creatorcontrib>Aziz, Mohd Faizal</creatorcontrib><creatorcontrib>Zain, Ahmad Rifqi Md</creatorcontrib><creatorcontrib>Yunas, Jumril</creatorcontrib><creatorcontrib>Majlis, Burhanuddin Yeop</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of refractory metals &amp; hard materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Latif, Rhonira</au><au>Jaafar, Muhammad Fahmi</au><au>Aziz, Mohd Faizal</au><au>Zain, Ahmad Rifqi Md</au><au>Yunas, Jumril</au><au>Majlis, Burhanuddin Yeop</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of tantalum's crystal phase growth on the microstructural, electrical and mechanical properties of sputter-deposited tantalum thin film layer</atitle><jtitle>International journal of refractory metals &amp; hard materials</jtitle><date>2020-11</date><risdate>2020</risdate><volume>92</volume><spage>105314</spage><pages>105314-</pages><artnum>105314</artnum><issn>0263-4368</issn><eissn>2213-3917</eissn><abstract>High melting point refractory tantalum (Ta) metal is frequently grown into thin film layer for many applications in biomedical implants, microelectronic devices and micro-level mechanical systems. Tantalum growth mechanism is still in debate and the inconsistent crystal phase outcome has puzzled many, though it is certain that the properties of the grown film are highly dependent on the formed crystal phase configuration. The microstructure, surface morphology, crystal orientation and residual stress of the sputter-deposited Ta thin films using direct current (DC) magnetron sputtering technique are studied at 0.4 Pa – 2 Pa of sputtering pressure, 100 W – 250 W of DC sputtering power on bare silicon and silicon dioxide substrate and 10 min – 50 min of sputtering duration. α-phase Ta is preferably grown at high sputtering time (high thickness) and high DC sputtering power (high growth rate). The sputtering pressure affects the thin film's microstructural porosity while the sputtering power controls the crystallisation's quality. Both sputtering pressure and power affect the generated argon plasma in the DC magnetron sputterer where α-phase Ta is preferably formed at high plasma. The presence of 3 μm silicon dioxide underlayer makes no difference compared to bare silicon substrate. Our study reveals that β-phase Ta is grown first irrespective of sputtering conditions and then transformed into α-phase Ta after reaching a certain thickness. The grown major α-phase content promotes small thin film sheet resistivity (58.9 μΩcm – 86.1 μΩcm) and is suspected to be the dominant factor that increases the compressive stress within the thin film layer and reduces the adhesion of Ta layer onto the substrate surface. The study has given a new insight in controlling the conductivity and adhesion level of Ta thin film based on the grown phase layer. •Consistent growth of β-phase tantalum at the early stage of sputtering process.•α-phase preferably formed as tantalum grows to a certain thickness.•High compressive stress and low adhesion level for tantalum with high α-phase content.</abstract><cop>Shrewsbury</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijrmhm.2020.105314</doi></addata></record>
fulltext fulltext
identifier ISSN: 0263-4368
ispartof International journal of refractory metals & hard materials, 2020-11, Vol.92, p.105314, Article 105314
issn 0263-4368
2213-3917
language eng
recordid cdi_proquest_journals_2452119128
source ScienceDirect Journals
subjects Adhesion
Argon
Argon plasma
Beta phase
Compressive properties
Crystal growth
Crystal phase
Crystal structure
Crystallization
DC magnetron sputtering
Direct current
Electrical resistivity
Magnetron sputtering
Mechanical properties
Mechanical systems
Melting points
Microstructure
Morphology
Phase transitions
Porosity
Residual stress
Silicon
Silicon dioxide
Silicon substrates
Surgical implants
Tantalum
Thickness
Thin film
Thin films
X-ray crystallography
title Influence of tantalum's crystal phase growth on the microstructural, electrical and mechanical properties of sputter-deposited tantalum thin film layer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A43%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20tantalum's%20crystal%20phase%20growth%20on%20the%20microstructural,%20electrical%20and%20mechanical%20properties%20of%20sputter-deposited%20tantalum%20thin%20film%20layer&rft.jtitle=International%20journal%20of%20refractory%20metals%20&%20hard%20materials&rft.au=Latif,%20Rhonira&rft.date=2020-11&rft.volume=92&rft.spage=105314&rft.pages=105314-&rft.artnum=105314&rft.issn=0263-4368&rft.eissn=2213-3917&rft_id=info:doi/10.1016/j.ijrmhm.2020.105314&rft_dat=%3Cproquest_cross%3E2452119128%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-b2092439421729b35708731520c9f34921850509b237bf4eaf409458794055fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2452119128&rft_id=info:pmid/&rfr_iscdi=true