Loading…
Highly spatially resolved mapping of the piezoelectric potentials in InGaN quantum well structures by off-axis electron holography
The internal fields in 2.2 nm thick InGaN quantum wells in a GaN LED structure have been investigated by using aberration-corrected off-axis electron holography with a spatial resolution of better than 1 nm. To improve the spatial resolution, different types of off-axis electron holography acquisiti...
Saved in:
Published in: | Journal of applied physics 2020-10, Vol.128 (15) |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c327t-3c06e2d6eb1c5f3a32fe0efee83376dbe1bf3b75b369c14043d31031a57059a63 |
---|---|
cites | cdi_FETCH-LOGICAL-c327t-3c06e2d6eb1c5f3a32fe0efee83376dbe1bf3b75b369c14043d31031a57059a63 |
container_end_page | |
container_issue | 15 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 128 |
creator | Boureau, V. Cooper, D. |
description | The internal fields in 2.2 nm thick InGaN quantum wells in a GaN LED structure have been investigated by using aberration-corrected off-axis electron holography with a spatial resolution of better than 1 nm. To improve the spatial resolution, different types of off-axis electron holography acquisitions have been used, including pi phase shifting and phase shifting holography. A series of electron holograms have been summed up to simultaneously improve the sensitivity in the measurements. A value of 20% of indium concentration in the quantum wells has been obtained by comparing the deformation measured by dark-field electron holography and geometrical phase analysis to finite element simulations. The electrostatic potential has then been measured by off-axis electron holography. The mean inner potential difference between the InGaN quantum wells and the GaN quantum barriers is high compared to the piezoelectric potential. Due to the improved spatial resolution, it is possible to compare the experimental results to simulations and remove the mean inner potential component to provide a quantitative measurement of the piezoelectric potential. |
doi_str_mv | 10.1063/5.0020717 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2452221322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2452221322</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-3c06e2d6eb1c5f3a32fe0efee83376dbe1bf3b75b369c14043d31031a57059a63</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWC8L3yDgSmFqLs1MZynFS6HoRtdDJnPSpkwnaZKp1qVPbqRFF4Krczh8_3fgR-iCkiElOb8RQ0IYKWhxgAaUjMusEIIcokG60mxcFuUxOglhSQilY14O0OejmS_aLQ5ORiPbtHkItt1Ag1fSOdPNsdU4LgA7Ax8WWlDRG4WdjdB9JwI2HZ52D_IJr3vZxX6F36BtcYi-V7FPNlxvk0Nn8t0EvBPYDi9sa-deusX2DB3p5IHz_TxFr_d3L5PHbPb8MJ3czjLFWREzrkgOrMmhpkpoLjnTQEADjDkv8qYGWmteF6LmeanoiIx4wynhVIqCiFLm_BRd7rzO23UPIVZL2_suvazYSDDGKGcsUVc7SnkbggddOW9W0m8rSqrviitR7StO7PWODcrE1J_tfuCN9b9g5Rr9H_zX_AUDHoyi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2452221322</pqid></control><display><type>article</type><title>Highly spatially resolved mapping of the piezoelectric potentials in InGaN quantum well structures by off-axis electron holography</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Boureau, V. ; Cooper, D.</creator><creatorcontrib>Boureau, V. ; Cooper, D.</creatorcontrib><description>The internal fields in 2.2 nm thick InGaN quantum wells in a GaN LED structure have been investigated by using aberration-corrected off-axis electron holography with a spatial resolution of better than 1 nm. To improve the spatial resolution, different types of off-axis electron holography acquisitions have been used, including pi phase shifting and phase shifting holography. A series of electron holograms have been summed up to simultaneously improve the sensitivity in the measurements. A value of 20% of indium concentration in the quantum wells has been obtained by comparing the deformation measured by dark-field electron holography and geometrical phase analysis to finite element simulations. The electrostatic potential has then been measured by off-axis electron holography. The mean inner potential difference between the InGaN quantum wells and the GaN quantum barriers is high compared to the piezoelectric potential. Due to the improved spatial resolution, it is possible to compare the experimental results to simulations and remove the mean inner potential component to provide a quantitative measurement of the piezoelectric potential.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0020717</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Electrons ; Finite element method ; Gallium nitrides ; Holograms ; Holography ; Indium gallium nitrides ; Piezoelectricity ; Quantum wells ; Spatial resolution</subject><ispartof>Journal of applied physics, 2020-10, Vol.128 (15)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-3c06e2d6eb1c5f3a32fe0efee83376dbe1bf3b75b369c14043d31031a57059a63</citedby><cites>FETCH-LOGICAL-c327t-3c06e2d6eb1c5f3a32fe0efee83376dbe1bf3b75b369c14043d31031a57059a63</cites><orcidid>0000-0003-3479-4374 ; 0000-0001-6251-5892</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Boureau, V.</creatorcontrib><creatorcontrib>Cooper, D.</creatorcontrib><title>Highly spatially resolved mapping of the piezoelectric potentials in InGaN quantum well structures by off-axis electron holography</title><title>Journal of applied physics</title><description>The internal fields in 2.2 nm thick InGaN quantum wells in a GaN LED structure have been investigated by using aberration-corrected off-axis electron holography with a spatial resolution of better than 1 nm. To improve the spatial resolution, different types of off-axis electron holography acquisitions have been used, including pi phase shifting and phase shifting holography. A series of electron holograms have been summed up to simultaneously improve the sensitivity in the measurements. A value of 20% of indium concentration in the quantum wells has been obtained by comparing the deformation measured by dark-field electron holography and geometrical phase analysis to finite element simulations. The electrostatic potential has then been measured by off-axis electron holography. The mean inner potential difference between the InGaN quantum wells and the GaN quantum barriers is high compared to the piezoelectric potential. Due to the improved spatial resolution, it is possible to compare the experimental results to simulations and remove the mean inner potential component to provide a quantitative measurement of the piezoelectric potential.</description><subject>Applied physics</subject><subject>Electrons</subject><subject>Finite element method</subject><subject>Gallium nitrides</subject><subject>Holograms</subject><subject>Holography</subject><subject>Indium gallium nitrides</subject><subject>Piezoelectricity</subject><subject>Quantum wells</subject><subject>Spatial resolution</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWC8L3yDgSmFqLs1MZynFS6HoRtdDJnPSpkwnaZKp1qVPbqRFF4Krczh8_3fgR-iCkiElOb8RQ0IYKWhxgAaUjMusEIIcokG60mxcFuUxOglhSQilY14O0OejmS_aLQ5ORiPbtHkItt1Ag1fSOdPNsdU4LgA7Ax8WWlDRG4WdjdB9JwI2HZ52D_IJr3vZxX6F36BtcYi-V7FPNlxvk0Nn8t0EvBPYDi9sa-deusX2DB3p5IHz_TxFr_d3L5PHbPb8MJ3czjLFWREzrkgOrMmhpkpoLjnTQEADjDkv8qYGWmteF6LmeanoiIx4wynhVIqCiFLm_BRd7rzO23UPIVZL2_suvazYSDDGKGcsUVc7SnkbggddOW9W0m8rSqrviitR7StO7PWODcrE1J_tfuCN9b9g5Rr9H_zX_AUDHoyi</recordid><startdate>20201021</startdate><enddate>20201021</enddate><creator>Boureau, V.</creator><creator>Cooper, D.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3479-4374</orcidid><orcidid>https://orcid.org/0000-0001-6251-5892</orcidid></search><sort><creationdate>20201021</creationdate><title>Highly spatially resolved mapping of the piezoelectric potentials in InGaN quantum well structures by off-axis electron holography</title><author>Boureau, V. ; Cooper, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-3c06e2d6eb1c5f3a32fe0efee83376dbe1bf3b75b369c14043d31031a57059a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applied physics</topic><topic>Electrons</topic><topic>Finite element method</topic><topic>Gallium nitrides</topic><topic>Holograms</topic><topic>Holography</topic><topic>Indium gallium nitrides</topic><topic>Piezoelectricity</topic><topic>Quantum wells</topic><topic>Spatial resolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boureau, V.</creatorcontrib><creatorcontrib>Cooper, D.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boureau, V.</au><au>Cooper, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly spatially resolved mapping of the piezoelectric potentials in InGaN quantum well structures by off-axis electron holography</atitle><jtitle>Journal of applied physics</jtitle><date>2020-10-21</date><risdate>2020</risdate><volume>128</volume><issue>15</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>The internal fields in 2.2 nm thick InGaN quantum wells in a GaN LED structure have been investigated by using aberration-corrected off-axis electron holography with a spatial resolution of better than 1 nm. To improve the spatial resolution, different types of off-axis electron holography acquisitions have been used, including pi phase shifting and phase shifting holography. A series of electron holograms have been summed up to simultaneously improve the sensitivity in the measurements. A value of 20% of indium concentration in the quantum wells has been obtained by comparing the deformation measured by dark-field electron holography and geometrical phase analysis to finite element simulations. The electrostatic potential has then been measured by off-axis electron holography. The mean inner potential difference between the InGaN quantum wells and the GaN quantum barriers is high compared to the piezoelectric potential. Due to the improved spatial resolution, it is possible to compare the experimental results to simulations and remove the mean inner potential component to provide a quantitative measurement of the piezoelectric potential.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0020717</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3479-4374</orcidid><orcidid>https://orcid.org/0000-0001-6251-5892</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2020-10, Vol.128 (15) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_proquest_journals_2452221322 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Applied physics Electrons Finite element method Gallium nitrides Holograms Holography Indium gallium nitrides Piezoelectricity Quantum wells Spatial resolution |
title | Highly spatially resolved mapping of the piezoelectric potentials in InGaN quantum well structures by off-axis electron holography |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A18%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20spatially%20resolved%20mapping%20of%20the%20piezoelectric%20potentials%20in%20InGaN%20quantum%20well%20structures%20by%20off-axis%20electron%20holography&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Boureau,%20V.&rft.date=2020-10-21&rft.volume=128&rft.issue=15&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0020717&rft_dat=%3Cproquest_cross%3E2452221322%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-3c06e2d6eb1c5f3a32fe0efee83376dbe1bf3b75b369c14043d31031a57059a63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2452221322&rft_id=info:pmid/&rfr_iscdi=true |