Loading…

Proactive Edge Caching in Content-Centric Networks With Massive Dynamic Content Requests

Edge computing is a promising infrastructure evolution to reduce traffic loads and support low-latency communications. Furthermore, content-centric networks provide a natural solution to cache contents at edge nodes. However, it is a challenge for edge nodes to handle massive and highly dynamic cont...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2020, Vol.8, p.59906-59921
Main Authors: Xu, Xiaogeng, Feng, Chunyan, Shan, Siyang, Zhang, Tiankui, Loo, Jonathan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Edge computing is a promising infrastructure evolution to reduce traffic loads and support low-latency communications. Furthermore, content-centric networks provide a natural solution to cache contents at edge nodes. However, it is a challenge for edge nodes to handle massive and highly dynamic content requests by users, and if without an efficient content caching strategy, the edge nodes will encounter high traffic load and latency due to increasing retrieval from content providers. This paper formulates a proactive edge caching problem to minimize the content retrieval cost at edge nodes. We exploit the inherent content caching and request aggregation mechanism in the content-centric networks to jointly minimize traffic load and content retrieval delay cost generated by the massive and dynamic content requests. We develop a Q-learning algorithm, which is an online optimal caching strategy, as it is adaptable to dynamic content popularity and content request intensity, and derive the long-term minimization of the content retrieval cost. Simulation results illustrate that the proposed algorithm can achieve a lower content retrieval cost compared with several baseline caching schemes.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2020.2983068