Loading…
Spatially Adaptive Regularizer for Mesh Denoising
Mesh denoising is a fundamental yet not well-solved problem in computer graphics. Many existing methods formulate the mesh denoising as an optimization problem, whereby the optimized mesh could best fit both the input and a set of constraints defined as an Lp norm regularizer. Instead of setting p a...
Saved in:
Published in: | IEEE access 2020-01, Vol.8, p.1-1 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Mesh denoising is a fundamental yet not well-solved problem in computer graphics. Many existing methods formulate the mesh denoising as an optimization problem, whereby the optimized mesh could best fit both the input and a set of constraints defined as an Lp norm regularizer. Instead of setting p as a static value for the whole surface, we adopt a dynamic Lp regularizer which imposes two different forms of regularization onto different surface patches for a better understanding of the local surface features. To help determine the appropriate p value for each facet, the guidance is constructed dynamically in a patch-based manner. We compare the proposed method with state-of-the-arts in both synthetic and real-scanned benchmark datasets, and show that the proposed method could produce comparable results to neural network based mesh denoising method, without collecting large training datasets. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2020.2987046 |