Loading…

Analysis and Experimental Research on a Novel Multi-Contact MVDC Natural Current Commutation Breaking Topology

The high performance of medium-voltage direct current (MVDC) power supply system is a pre-requisite for several industrial applications. To meet the higher voltage direct current (DC) breaking requirements in the fields of aviation, aerospace, and new energy, this article proposes a novel MVDC commu...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2020, Vol.8, p.186540-186550
Main Authors: Jia, Bowen, Wu, Jianwen, Xia, Shangwen, Luo, Xiaowu, Ma, Suliang, Jiang, Yuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-1c6eb662cd585d08cc37d586dbe723684d8028f9c1d372212157188d5ce575da3
cites cdi_FETCH-LOGICAL-c408t-1c6eb662cd585d08cc37d586dbe723684d8028f9c1d372212157188d5ce575da3
container_end_page 186550
container_issue
container_start_page 186540
container_title IEEE access
container_volume 8
creator Jia, Bowen
Wu, Jianwen
Xia, Shangwen
Luo, Xiaowu
Ma, Suliang
Jiang, Yuan
description The high performance of medium-voltage direct current (MVDC) power supply system is a pre-requisite for several industrial applications. To meet the higher voltage direct current (DC) breaking requirements in the fields of aviation, aerospace, and new energy, this article proposes a novel MVDC commutation breaking topology that combines a load-carrying branch and an arcing branch in parallel. In contrast to the conventional structure based on semiconductor devices, each branch in the proposed topology contains a mechanical contact, which provides a lower on-state loss and higher voltage-breaking capacity. Moreover, the theoretical analysis and experimental results verified the asynchronous operation of the current-loading and confirmed that the arcing branch can realize the natural commutation of the current for the breaking of overload current or short-circuit current. A detailed equivalent model that combines the micro-electrical contact theory and phase-change characteristics of the electrode material was then established to investigate the molten metal bridge and pseudo arc phenomenon of the contact area during the commutation process. The results indicated that although the presence of a molten metal bridge and pseudo arc increase the current commutation time and erosion of the electrode material, the commutation process can be conducted. Finally, based on the softening voltage of the electrode material under the rated conditions, in addition to the phase change during dynamic commutation, the roughness \sigma and elastic modulus E can be adjusted appropriately to achieve arc-less current commutation.
doi_str_mv 10.1109/ACCESS.2020.3030660
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2453817307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9222152</ieee_id><doaj_id>oai_doaj_org_article_ee1f555996b140eb95ea7acc44e1dacd</doaj_id><sourcerecordid>2453817307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-1c6eb662cd585d08cc37d586dbe723684d8028f9c1d372212157188d5ce575da3</originalsourceid><addsrcrecordid>eNpNkVtP3DAQhSPUSiDKL-DFEs_Z-hJf8rhNty0SUKlQXq1Ze3abbTbe2k7V_fc1BCHmZUaj8x1rfKrqktEFY7T9uOy61f39glNOF4IKqhQ9qc44U20tpFDv3syn1UVKO1rKlJXUZ9W4HGE4pj4RGD1Z_Ttg7Pc4ZhjID0wI0f0iYSRA7sJfHMjtNOS-7kIRuExuHz935A7yFIu8m2IsIOnCfj9lyH3BPkWE3_24JQ_hEIawPX6o3m9gSHjx0s-rn19WD923-ub71-tueVO7hppcM6dwrRR3XhrpqXFO6DIqv0bNhTKNN5SbTeuYF5pzxpnUzBgvHUotPYjz6nr29QF29lBugni0AXr7vAhxayHm3g1oEdlGStm2as0aiutWImhwrmmQeXC-eF3NXocY_kyYst2FKZZvS5Y3UhimBdVFJWaViyGliJvXVxm1TznZOSf7lJN9yalQlzPVI-Ir0fJyk-TiP20jjp8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453817307</pqid></control><display><type>article</type><title>Analysis and Experimental Research on a Novel Multi-Contact MVDC Natural Current Commutation Breaking Topology</title><source>IEEE Open Access Journals</source><creator>Jia, Bowen ; Wu, Jianwen ; Xia, Shangwen ; Luo, Xiaowu ; Ma, Suliang ; Jiang, Yuan</creator><creatorcontrib>Jia, Bowen ; Wu, Jianwen ; Xia, Shangwen ; Luo, Xiaowu ; Ma, Suliang ; Jiang, Yuan</creatorcontrib><description><![CDATA[The high performance of medium-voltage direct current (MVDC) power supply system is a pre-requisite for several industrial applications. To meet the higher voltage direct current (DC) breaking requirements in the fields of aviation, aerospace, and new energy, this article proposes a novel MVDC commutation breaking topology that combines a load-carrying branch and an arcing branch in parallel. In contrast to the conventional structure based on semiconductor devices, each branch in the proposed topology contains a mechanical contact, which provides a lower on-state loss and higher voltage-breaking capacity. Moreover, the theoretical analysis and experimental results verified the asynchronous operation of the current-loading and confirmed that the arcing branch can realize the natural commutation of the current for the breaking of overload current or short-circuit current. A detailed equivalent model that combines the micro-electrical contact theory and phase-change characteristics of the electrode material was then established to investigate the molten metal bridge and pseudo arc phenomenon of the contact area during the commutation process. The results indicated that although the presence of a molten metal bridge and pseudo arc increase the current commutation time and erosion of the electrode material, the commutation process can be conducted. Finally, based on the softening voltage of the electrode material under the rated conditions, in addition to the phase change during dynamic commutation, the roughness <inline-formula> <tex-math notation="LaTeX">\sigma </tex-math></inline-formula> and elastic modulus <inline-formula> <tex-math notation="LaTeX">E </tex-math></inline-formula> can be adjusted appropriately to achieve arc-less current commutation.]]></description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3030660</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Bridge circuits ; Circuit breakers ; Circuits ; Commutation ; Contact resistance ; current commutation ; dc circuit breaker ; Direct current ; Electric bridges ; Electric contacts ; Electric potential ; Electric power supplies ; Electrode materials ; Electrodes ; Industrial applications ; Liquid metals ; Metals ; Modulus of elasticity ; molten bridge ; Overloading ; Phase change ; Semiconductor devices ; Short circuit currents ; Topology ; Voltage</subject><ispartof>IEEE access, 2020, Vol.8, p.186540-186550</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-1c6eb662cd585d08cc37d586dbe723684d8028f9c1d372212157188d5ce575da3</citedby><cites>FETCH-LOGICAL-c408t-1c6eb662cd585d08cc37d586dbe723684d8028f9c1d372212157188d5ce575da3</cites><orcidid>0000-0003-4916-8595 ; 0000-0001-6002-7414 ; 0000-0003-4165-7407 ; 0000-0001-8936-2822</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9222152$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Jia, Bowen</creatorcontrib><creatorcontrib>Wu, Jianwen</creatorcontrib><creatorcontrib>Xia, Shangwen</creatorcontrib><creatorcontrib>Luo, Xiaowu</creatorcontrib><creatorcontrib>Ma, Suliang</creatorcontrib><creatorcontrib>Jiang, Yuan</creatorcontrib><title>Analysis and Experimental Research on a Novel Multi-Contact MVDC Natural Current Commutation Breaking Topology</title><title>IEEE access</title><addtitle>Access</addtitle><description><![CDATA[The high performance of medium-voltage direct current (MVDC) power supply system is a pre-requisite for several industrial applications. To meet the higher voltage direct current (DC) breaking requirements in the fields of aviation, aerospace, and new energy, this article proposes a novel MVDC commutation breaking topology that combines a load-carrying branch and an arcing branch in parallel. In contrast to the conventional structure based on semiconductor devices, each branch in the proposed topology contains a mechanical contact, which provides a lower on-state loss and higher voltage-breaking capacity. Moreover, the theoretical analysis and experimental results verified the asynchronous operation of the current-loading and confirmed that the arcing branch can realize the natural commutation of the current for the breaking of overload current or short-circuit current. A detailed equivalent model that combines the micro-electrical contact theory and phase-change characteristics of the electrode material was then established to investigate the molten metal bridge and pseudo arc phenomenon of the contact area during the commutation process. The results indicated that although the presence of a molten metal bridge and pseudo arc increase the current commutation time and erosion of the electrode material, the commutation process can be conducted. Finally, based on the softening voltage of the electrode material under the rated conditions, in addition to the phase change during dynamic commutation, the roughness <inline-formula> <tex-math notation="LaTeX">\sigma </tex-math></inline-formula> and elastic modulus <inline-formula> <tex-math notation="LaTeX">E </tex-math></inline-formula> can be adjusted appropriately to achieve arc-less current commutation.]]></description><subject>Bridge circuits</subject><subject>Circuit breakers</subject><subject>Circuits</subject><subject>Commutation</subject><subject>Contact resistance</subject><subject>current commutation</subject><subject>dc circuit breaker</subject><subject>Direct current</subject><subject>Electric bridges</subject><subject>Electric contacts</subject><subject>Electric potential</subject><subject>Electric power supplies</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Industrial applications</subject><subject>Liquid metals</subject><subject>Metals</subject><subject>Modulus of elasticity</subject><subject>molten bridge</subject><subject>Overloading</subject><subject>Phase change</subject><subject>Semiconductor devices</subject><subject>Short circuit currents</subject><subject>Topology</subject><subject>Voltage</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVtP3DAQhSPUSiDKL-DFEs_Z-hJf8rhNty0SUKlQXq1Ze3abbTbe2k7V_fc1BCHmZUaj8x1rfKrqktEFY7T9uOy61f39glNOF4IKqhQ9qc44U20tpFDv3syn1UVKO1rKlJXUZ9W4HGE4pj4RGD1Z_Ttg7Pc4ZhjID0wI0f0iYSRA7sJfHMjtNOS-7kIRuExuHz935A7yFIu8m2IsIOnCfj9lyH3BPkWE3_24JQ_hEIawPX6o3m9gSHjx0s-rn19WD923-ub71-tueVO7hppcM6dwrRR3XhrpqXFO6DIqv0bNhTKNN5SbTeuYF5pzxpnUzBgvHUotPYjz6nr29QF29lBugni0AXr7vAhxayHm3g1oEdlGStm2as0aiutWImhwrmmQeXC-eF3NXocY_kyYst2FKZZvS5Y3UhimBdVFJWaViyGliJvXVxm1TznZOSf7lJN9yalQlzPVI-Ir0fJyk-TiP20jjp8</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Jia, Bowen</creator><creator>Wu, Jianwen</creator><creator>Xia, Shangwen</creator><creator>Luo, Xiaowu</creator><creator>Ma, Suliang</creator><creator>Jiang, Yuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4916-8595</orcidid><orcidid>https://orcid.org/0000-0001-6002-7414</orcidid><orcidid>https://orcid.org/0000-0003-4165-7407</orcidid><orcidid>https://orcid.org/0000-0001-8936-2822</orcidid></search><sort><creationdate>2020</creationdate><title>Analysis and Experimental Research on a Novel Multi-Contact MVDC Natural Current Commutation Breaking Topology</title><author>Jia, Bowen ; Wu, Jianwen ; Xia, Shangwen ; Luo, Xiaowu ; Ma, Suliang ; Jiang, Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-1c6eb662cd585d08cc37d586dbe723684d8028f9c1d372212157188d5ce575da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bridge circuits</topic><topic>Circuit breakers</topic><topic>Circuits</topic><topic>Commutation</topic><topic>Contact resistance</topic><topic>current commutation</topic><topic>dc circuit breaker</topic><topic>Direct current</topic><topic>Electric bridges</topic><topic>Electric contacts</topic><topic>Electric potential</topic><topic>Electric power supplies</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Industrial applications</topic><topic>Liquid metals</topic><topic>Metals</topic><topic>Modulus of elasticity</topic><topic>molten bridge</topic><topic>Overloading</topic><topic>Phase change</topic><topic>Semiconductor devices</topic><topic>Short circuit currents</topic><topic>Topology</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Bowen</creatorcontrib><creatorcontrib>Wu, Jianwen</creatorcontrib><creatorcontrib>Xia, Shangwen</creatorcontrib><creatorcontrib>Luo, Xiaowu</creatorcontrib><creatorcontrib>Ma, Suliang</creatorcontrib><creatorcontrib>Jiang, Yuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Bowen</au><au>Wu, Jianwen</au><au>Xia, Shangwen</au><au>Luo, Xiaowu</au><au>Ma, Suliang</au><au>Jiang, Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis and Experimental Research on a Novel Multi-Contact MVDC Natural Current Commutation Breaking Topology</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>186540</spage><epage>186550</epage><pages>186540-186550</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract><![CDATA[The high performance of medium-voltage direct current (MVDC) power supply system is a pre-requisite for several industrial applications. To meet the higher voltage direct current (DC) breaking requirements in the fields of aviation, aerospace, and new energy, this article proposes a novel MVDC commutation breaking topology that combines a load-carrying branch and an arcing branch in parallel. In contrast to the conventional structure based on semiconductor devices, each branch in the proposed topology contains a mechanical contact, which provides a lower on-state loss and higher voltage-breaking capacity. Moreover, the theoretical analysis and experimental results verified the asynchronous operation of the current-loading and confirmed that the arcing branch can realize the natural commutation of the current for the breaking of overload current or short-circuit current. A detailed equivalent model that combines the micro-electrical contact theory and phase-change characteristics of the electrode material was then established to investigate the molten metal bridge and pseudo arc phenomenon of the contact area during the commutation process. The results indicated that although the presence of a molten metal bridge and pseudo arc increase the current commutation time and erosion of the electrode material, the commutation process can be conducted. Finally, based on the softening voltage of the electrode material under the rated conditions, in addition to the phase change during dynamic commutation, the roughness <inline-formula> <tex-math notation="LaTeX">\sigma </tex-math></inline-formula> and elastic modulus <inline-formula> <tex-math notation="LaTeX">E </tex-math></inline-formula> can be adjusted appropriately to achieve arc-less current commutation.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3030660</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4916-8595</orcidid><orcidid>https://orcid.org/0000-0001-6002-7414</orcidid><orcidid>https://orcid.org/0000-0003-4165-7407</orcidid><orcidid>https://orcid.org/0000-0001-8936-2822</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.186540-186550
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2453817307
source IEEE Open Access Journals
subjects Bridge circuits
Circuit breakers
Circuits
Commutation
Contact resistance
current commutation
dc circuit breaker
Direct current
Electric bridges
Electric contacts
Electric potential
Electric power supplies
Electrode materials
Electrodes
Industrial applications
Liquid metals
Metals
Modulus of elasticity
molten bridge
Overloading
Phase change
Semiconductor devices
Short circuit currents
Topology
Voltage
title Analysis and Experimental Research on a Novel Multi-Contact MVDC Natural Current Commutation Breaking Topology
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A18%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20and%20Experimental%20Research%20on%20a%20Novel%20Multi-Contact%20MVDC%20Natural%20Current%20Commutation%20Breaking%20Topology&rft.jtitle=IEEE%20access&rft.au=Jia,%20Bowen&rft.date=2020&rft.volume=8&rft.spage=186540&rft.epage=186550&rft.pages=186540-186550&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3030660&rft_dat=%3Cproquest_cross%3E2453817307%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-1c6eb662cd585d08cc37d586dbe723684d8028f9c1d372212157188d5ce575da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2453817307&rft_id=info:pmid/&rft_ieee_id=9222152&rfr_iscdi=true