Loading…
Analysis and Experimental Research on a Novel Multi-Contact MVDC Natural Current Commutation Breaking Topology
The high performance of medium-voltage direct current (MVDC) power supply system is a pre-requisite for several industrial applications. To meet the higher voltage direct current (DC) breaking requirements in the fields of aviation, aerospace, and new energy, this article proposes a novel MVDC commu...
Saved in:
Published in: | IEEE access 2020, Vol.8, p.186540-186550 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-1c6eb662cd585d08cc37d586dbe723684d8028f9c1d372212157188d5ce575da3 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-1c6eb662cd585d08cc37d586dbe723684d8028f9c1d372212157188d5ce575da3 |
container_end_page | 186550 |
container_issue | |
container_start_page | 186540 |
container_title | IEEE access |
container_volume | 8 |
creator | Jia, Bowen Wu, Jianwen Xia, Shangwen Luo, Xiaowu Ma, Suliang Jiang, Yuan |
description | The high performance of medium-voltage direct current (MVDC) power supply system is a pre-requisite for several industrial applications. To meet the higher voltage direct current (DC) breaking requirements in the fields of aviation, aerospace, and new energy, this article proposes a novel MVDC commutation breaking topology that combines a load-carrying branch and an arcing branch in parallel. In contrast to the conventional structure based on semiconductor devices, each branch in the proposed topology contains a mechanical contact, which provides a lower on-state loss and higher voltage-breaking capacity. Moreover, the theoretical analysis and experimental results verified the asynchronous operation of the current-loading and confirmed that the arcing branch can realize the natural commutation of the current for the breaking of overload current or short-circuit current. A detailed equivalent model that combines the micro-electrical contact theory and phase-change characteristics of the electrode material was then established to investigate the molten metal bridge and pseudo arc phenomenon of the contact area during the commutation process. The results indicated that although the presence of a molten metal bridge and pseudo arc increase the current commutation time and erosion of the electrode material, the commutation process can be conducted. Finally, based on the softening voltage of the electrode material under the rated conditions, in addition to the phase change during dynamic commutation, the roughness \sigma and elastic modulus E can be adjusted appropriately to achieve arc-less current commutation. |
doi_str_mv | 10.1109/ACCESS.2020.3030660 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2453817307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9222152</ieee_id><doaj_id>oai_doaj_org_article_ee1f555996b140eb95ea7acc44e1dacd</doaj_id><sourcerecordid>2453817307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-1c6eb662cd585d08cc37d586dbe723684d8028f9c1d372212157188d5ce575da3</originalsourceid><addsrcrecordid>eNpNkVtP3DAQhSPUSiDKL-DFEs_Z-hJf8rhNty0SUKlQXq1Ze3abbTbe2k7V_fc1BCHmZUaj8x1rfKrqktEFY7T9uOy61f39glNOF4IKqhQ9qc44U20tpFDv3syn1UVKO1rKlJXUZ9W4HGE4pj4RGD1Z_Ttg7Pc4ZhjID0wI0f0iYSRA7sJfHMjtNOS-7kIRuExuHz935A7yFIu8m2IsIOnCfj9lyH3BPkWE3_24JQ_hEIawPX6o3m9gSHjx0s-rn19WD923-ub71-tueVO7hppcM6dwrRR3XhrpqXFO6DIqv0bNhTKNN5SbTeuYF5pzxpnUzBgvHUotPYjz6nr29QF29lBugni0AXr7vAhxayHm3g1oEdlGStm2as0aiutWImhwrmmQeXC-eF3NXocY_kyYst2FKZZvS5Y3UhimBdVFJWaViyGliJvXVxm1TznZOSf7lJN9yalQlzPVI-Ir0fJyk-TiP20jjp8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453817307</pqid></control><display><type>article</type><title>Analysis and Experimental Research on a Novel Multi-Contact MVDC Natural Current Commutation Breaking Topology</title><source>IEEE Open Access Journals</source><creator>Jia, Bowen ; Wu, Jianwen ; Xia, Shangwen ; Luo, Xiaowu ; Ma, Suliang ; Jiang, Yuan</creator><creatorcontrib>Jia, Bowen ; Wu, Jianwen ; Xia, Shangwen ; Luo, Xiaowu ; Ma, Suliang ; Jiang, Yuan</creatorcontrib><description><![CDATA[The high performance of medium-voltage direct current (MVDC) power supply system is a pre-requisite for several industrial applications. To meet the higher voltage direct current (DC) breaking requirements in the fields of aviation, aerospace, and new energy, this article proposes a novel MVDC commutation breaking topology that combines a load-carrying branch and an arcing branch in parallel. In contrast to the conventional structure based on semiconductor devices, each branch in the proposed topology contains a mechanical contact, which provides a lower on-state loss and higher voltage-breaking capacity. Moreover, the theoretical analysis and experimental results verified the asynchronous operation of the current-loading and confirmed that the arcing branch can realize the natural commutation of the current for the breaking of overload current or short-circuit current. A detailed equivalent model that combines the micro-electrical contact theory and phase-change characteristics of the electrode material was then established to investigate the molten metal bridge and pseudo arc phenomenon of the contact area during the commutation process. The results indicated that although the presence of a molten metal bridge and pseudo arc increase the current commutation time and erosion of the electrode material, the commutation process can be conducted. Finally, based on the softening voltage of the electrode material under the rated conditions, in addition to the phase change during dynamic commutation, the roughness <inline-formula> <tex-math notation="LaTeX">\sigma </tex-math></inline-formula> and elastic modulus <inline-formula> <tex-math notation="LaTeX">E </tex-math></inline-formula> can be adjusted appropriately to achieve arc-less current commutation.]]></description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3030660</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Bridge circuits ; Circuit breakers ; Circuits ; Commutation ; Contact resistance ; current commutation ; dc circuit breaker ; Direct current ; Electric bridges ; Electric contacts ; Electric potential ; Electric power supplies ; Electrode materials ; Electrodes ; Industrial applications ; Liquid metals ; Metals ; Modulus of elasticity ; molten bridge ; Overloading ; Phase change ; Semiconductor devices ; Short circuit currents ; Topology ; Voltage</subject><ispartof>IEEE access, 2020, Vol.8, p.186540-186550</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-1c6eb662cd585d08cc37d586dbe723684d8028f9c1d372212157188d5ce575da3</citedby><cites>FETCH-LOGICAL-c408t-1c6eb662cd585d08cc37d586dbe723684d8028f9c1d372212157188d5ce575da3</cites><orcidid>0000-0003-4916-8595 ; 0000-0001-6002-7414 ; 0000-0003-4165-7407 ; 0000-0001-8936-2822</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9222152$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Jia, Bowen</creatorcontrib><creatorcontrib>Wu, Jianwen</creatorcontrib><creatorcontrib>Xia, Shangwen</creatorcontrib><creatorcontrib>Luo, Xiaowu</creatorcontrib><creatorcontrib>Ma, Suliang</creatorcontrib><creatorcontrib>Jiang, Yuan</creatorcontrib><title>Analysis and Experimental Research on a Novel Multi-Contact MVDC Natural Current Commutation Breaking Topology</title><title>IEEE access</title><addtitle>Access</addtitle><description><![CDATA[The high performance of medium-voltage direct current (MVDC) power supply system is a pre-requisite for several industrial applications. To meet the higher voltage direct current (DC) breaking requirements in the fields of aviation, aerospace, and new energy, this article proposes a novel MVDC commutation breaking topology that combines a load-carrying branch and an arcing branch in parallel. In contrast to the conventional structure based on semiconductor devices, each branch in the proposed topology contains a mechanical contact, which provides a lower on-state loss and higher voltage-breaking capacity. Moreover, the theoretical analysis and experimental results verified the asynchronous operation of the current-loading and confirmed that the arcing branch can realize the natural commutation of the current for the breaking of overload current or short-circuit current. A detailed equivalent model that combines the micro-electrical contact theory and phase-change characteristics of the electrode material was then established to investigate the molten metal bridge and pseudo arc phenomenon of the contact area during the commutation process. The results indicated that although the presence of a molten metal bridge and pseudo arc increase the current commutation time and erosion of the electrode material, the commutation process can be conducted. Finally, based on the softening voltage of the electrode material under the rated conditions, in addition to the phase change during dynamic commutation, the roughness <inline-formula> <tex-math notation="LaTeX">\sigma </tex-math></inline-formula> and elastic modulus <inline-formula> <tex-math notation="LaTeX">E </tex-math></inline-formula> can be adjusted appropriately to achieve arc-less current commutation.]]></description><subject>Bridge circuits</subject><subject>Circuit breakers</subject><subject>Circuits</subject><subject>Commutation</subject><subject>Contact resistance</subject><subject>current commutation</subject><subject>dc circuit breaker</subject><subject>Direct current</subject><subject>Electric bridges</subject><subject>Electric contacts</subject><subject>Electric potential</subject><subject>Electric power supplies</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Industrial applications</subject><subject>Liquid metals</subject><subject>Metals</subject><subject>Modulus of elasticity</subject><subject>molten bridge</subject><subject>Overloading</subject><subject>Phase change</subject><subject>Semiconductor devices</subject><subject>Short circuit currents</subject><subject>Topology</subject><subject>Voltage</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVtP3DAQhSPUSiDKL-DFEs_Z-hJf8rhNty0SUKlQXq1Ze3abbTbe2k7V_fc1BCHmZUaj8x1rfKrqktEFY7T9uOy61f39glNOF4IKqhQ9qc44U20tpFDv3syn1UVKO1rKlJXUZ9W4HGE4pj4RGD1Z_Ttg7Pc4ZhjID0wI0f0iYSRA7sJfHMjtNOS-7kIRuExuHz935A7yFIu8m2IsIOnCfj9lyH3BPkWE3_24JQ_hEIawPX6o3m9gSHjx0s-rn19WD923-ub71-tueVO7hppcM6dwrRR3XhrpqXFO6DIqv0bNhTKNN5SbTeuYF5pzxpnUzBgvHUotPYjz6nr29QF29lBugni0AXr7vAhxayHm3g1oEdlGStm2as0aiutWImhwrmmQeXC-eF3NXocY_kyYst2FKZZvS5Y3UhimBdVFJWaViyGliJvXVxm1TznZOSf7lJN9yalQlzPVI-Ir0fJyk-TiP20jjp8</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Jia, Bowen</creator><creator>Wu, Jianwen</creator><creator>Xia, Shangwen</creator><creator>Luo, Xiaowu</creator><creator>Ma, Suliang</creator><creator>Jiang, Yuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4916-8595</orcidid><orcidid>https://orcid.org/0000-0001-6002-7414</orcidid><orcidid>https://orcid.org/0000-0003-4165-7407</orcidid><orcidid>https://orcid.org/0000-0001-8936-2822</orcidid></search><sort><creationdate>2020</creationdate><title>Analysis and Experimental Research on a Novel Multi-Contact MVDC Natural Current Commutation Breaking Topology</title><author>Jia, Bowen ; Wu, Jianwen ; Xia, Shangwen ; Luo, Xiaowu ; Ma, Suliang ; Jiang, Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-1c6eb662cd585d08cc37d586dbe723684d8028f9c1d372212157188d5ce575da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bridge circuits</topic><topic>Circuit breakers</topic><topic>Circuits</topic><topic>Commutation</topic><topic>Contact resistance</topic><topic>current commutation</topic><topic>dc circuit breaker</topic><topic>Direct current</topic><topic>Electric bridges</topic><topic>Electric contacts</topic><topic>Electric potential</topic><topic>Electric power supplies</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Industrial applications</topic><topic>Liquid metals</topic><topic>Metals</topic><topic>Modulus of elasticity</topic><topic>molten bridge</topic><topic>Overloading</topic><topic>Phase change</topic><topic>Semiconductor devices</topic><topic>Short circuit currents</topic><topic>Topology</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Bowen</creatorcontrib><creatorcontrib>Wu, Jianwen</creatorcontrib><creatorcontrib>Xia, Shangwen</creatorcontrib><creatorcontrib>Luo, Xiaowu</creatorcontrib><creatorcontrib>Ma, Suliang</creatorcontrib><creatorcontrib>Jiang, Yuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Bowen</au><au>Wu, Jianwen</au><au>Xia, Shangwen</au><au>Luo, Xiaowu</au><au>Ma, Suliang</au><au>Jiang, Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis and Experimental Research on a Novel Multi-Contact MVDC Natural Current Commutation Breaking Topology</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>186540</spage><epage>186550</epage><pages>186540-186550</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract><![CDATA[The high performance of medium-voltage direct current (MVDC) power supply system is a pre-requisite for several industrial applications. To meet the higher voltage direct current (DC) breaking requirements in the fields of aviation, aerospace, and new energy, this article proposes a novel MVDC commutation breaking topology that combines a load-carrying branch and an arcing branch in parallel. In contrast to the conventional structure based on semiconductor devices, each branch in the proposed topology contains a mechanical contact, which provides a lower on-state loss and higher voltage-breaking capacity. Moreover, the theoretical analysis and experimental results verified the asynchronous operation of the current-loading and confirmed that the arcing branch can realize the natural commutation of the current for the breaking of overload current or short-circuit current. A detailed equivalent model that combines the micro-electrical contact theory and phase-change characteristics of the electrode material was then established to investigate the molten metal bridge and pseudo arc phenomenon of the contact area during the commutation process. The results indicated that although the presence of a molten metal bridge and pseudo arc increase the current commutation time and erosion of the electrode material, the commutation process can be conducted. Finally, based on the softening voltage of the electrode material under the rated conditions, in addition to the phase change during dynamic commutation, the roughness <inline-formula> <tex-math notation="LaTeX">\sigma </tex-math></inline-formula> and elastic modulus <inline-formula> <tex-math notation="LaTeX">E </tex-math></inline-formula> can be adjusted appropriately to achieve arc-less current commutation.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3030660</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4916-8595</orcidid><orcidid>https://orcid.org/0000-0001-6002-7414</orcidid><orcidid>https://orcid.org/0000-0003-4165-7407</orcidid><orcidid>https://orcid.org/0000-0001-8936-2822</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.186540-186550 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2453817307 |
source | IEEE Open Access Journals |
subjects | Bridge circuits Circuit breakers Circuits Commutation Contact resistance current commutation dc circuit breaker Direct current Electric bridges Electric contacts Electric potential Electric power supplies Electrode materials Electrodes Industrial applications Liquid metals Metals Modulus of elasticity molten bridge Overloading Phase change Semiconductor devices Short circuit currents Topology Voltage |
title | Analysis and Experimental Research on a Novel Multi-Contact MVDC Natural Current Commutation Breaking Topology |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A18%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20and%20Experimental%20Research%20on%20a%20Novel%20Multi-Contact%20MVDC%20Natural%20Current%20Commutation%20Breaking%20Topology&rft.jtitle=IEEE%20access&rft.au=Jia,%20Bowen&rft.date=2020&rft.volume=8&rft.spage=186540&rft.epage=186550&rft.pages=186540-186550&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3030660&rft_dat=%3Cproquest_cross%3E2453817307%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-1c6eb662cd585d08cc37d586dbe723684d8028f9c1d372212157188d5ce575da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2453817307&rft_id=info:pmid/&rft_ieee_id=9222152&rfr_iscdi=true |