Loading…

On‐line balancing of random inputs

We consider an online vector balancing game where vectors vt, chosen uniformly at random in {− 1, + 1}n, arrive over time and a sign xt ∈ {− 1, + 1} must be picked immediately upon the arrival of vt. The goal is to minimize the L∞ norm of the signed sum ∑txtvt. We give an online strategy for picking...

Full description

Saved in:
Bibliographic Details
Published in:Random structures & algorithms 2020-12, Vol.57 (4), p.879-891
Main Authors: Bansal, Nikhil, Spencer, Joel H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3325-58abac75e393e1977b45de0d02d355467485e38ea15850503dd0c094bed5072e3
cites cdi_FETCH-LOGICAL-c3325-58abac75e393e1977b45de0d02d355467485e38ea15850503dd0c094bed5072e3
container_end_page 891
container_issue 4
container_start_page 879
container_title Random structures & algorithms
container_volume 57
creator Bansal, Nikhil
Spencer, Joel H.
description We consider an online vector balancing game where vectors vt, chosen uniformly at random in {− 1, + 1}n, arrive over time and a sign xt ∈ {− 1, + 1} must be picked immediately upon the arrival of vt. The goal is to minimize the L∞ norm of the signed sum ∑txtvt. We give an online strategy for picking the signs xt that has value O(n1/2) with high probability. Up to constants, this is the best possible even when the vectors are given in advance.
doi_str_mv 10.1002/rsa.20955
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2454054747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2454054747</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3325-58abac75e393e1977b45de0d02d355467485e38ea15850503dd0c094bed5072e3</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWKsL32BANy6mPbkckyxLsSoUCl7WITPJyJRppiYdpDsfwWf0SZw6bl2dA-c7_w8fIZcUJhSATWOyEwYa8YiMKGiVM0HV8WEXLNeKs1NyltIaACRnfESuV-H786upg88K29hQ1uEta6ss2uDaTVaHbbdL5-Sksk3yF39zTF4Xdy_zh3y5un-cz5Z5yTnDHJUtbCnRc8091VIWAp0HB8xxRHErhepvyluKCgGBOwclaFF4hyCZ52NyNeRuY_ve-bQz67aLoa80TKAAFFLInroZqDK2KUVfmW2sNzbuDQVzkGB6CeZXQs9OB_ajbvz-f9A8Pc-Gjx_i1Fwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454054747</pqid></control><display><type>article</type><title>On‐line balancing of random inputs</title><source>Wiley</source><creator>Bansal, Nikhil ; Spencer, Joel H.</creator><creatorcontrib>Bansal, Nikhil ; Spencer, Joel H.</creatorcontrib><description>We consider an online vector balancing game where vectors vt, chosen uniformly at random in {− 1, + 1}n, arrive over time and a sign xt ∈ {− 1, + 1} must be picked immediately upon the arrival of vt. The goal is to minimize the L∞ norm of the signed sum ∑txtvt. We give an online strategy for picking the signs xt that has value O(n1/2) with high probability. Up to constants, this is the best possible even when the vectors are given in advance.</description><identifier>ISSN: 1042-9832</identifier><identifier>EISSN: 1098-2418</identifier><identifier>DOI: 10.1002/rsa.20955</identifier><language>eng</language><publisher>New York: John Wiley &amp; Sons, Inc</publisher><subject>Balancing ; Computer &amp; video games ; discrepancy ; online algorithms ; random vectors</subject><ispartof>Random structures &amp; algorithms, 2020-12, Vol.57 (4), p.879-891</ispartof><rights>2020 Wiley Periodicals LLC</rights><rights>2020 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3325-58abac75e393e1977b45de0d02d355467485e38ea15850503dd0c094bed5072e3</citedby><cites>FETCH-LOGICAL-c3325-58abac75e393e1977b45de0d02d355467485e38ea15850503dd0c094bed5072e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Bansal, Nikhil</creatorcontrib><creatorcontrib>Spencer, Joel H.</creatorcontrib><title>On‐line balancing of random inputs</title><title>Random structures &amp; algorithms</title><description>We consider an online vector balancing game where vectors vt, chosen uniformly at random in {− 1, + 1}n, arrive over time and a sign xt ∈ {− 1, + 1} must be picked immediately upon the arrival of vt. The goal is to minimize the L∞ norm of the signed sum ∑txtvt. We give an online strategy for picking the signs xt that has value O(n1/2) with high probability. Up to constants, this is the best possible even when the vectors are given in advance.</description><subject>Balancing</subject><subject>Computer &amp; video games</subject><subject>discrepancy</subject><subject>online algorithms</subject><subject>random vectors</subject><issn>1042-9832</issn><issn>1098-2418</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKAzEUhoMoWKsL32BANy6mPbkckyxLsSoUCl7WITPJyJRppiYdpDsfwWf0SZw6bl2dA-c7_w8fIZcUJhSATWOyEwYa8YiMKGiVM0HV8WEXLNeKs1NyltIaACRnfESuV-H786upg88K29hQ1uEta6ss2uDaTVaHbbdL5-Sksk3yF39zTF4Xdy_zh3y5un-cz5Z5yTnDHJUtbCnRc8091VIWAp0HB8xxRHErhepvyluKCgGBOwclaFF4hyCZ52NyNeRuY_ve-bQz67aLoa80TKAAFFLInroZqDK2KUVfmW2sNzbuDQVzkGB6CeZXQs9OB_ajbvz-f9A8Pc-Gjx_i1Fwg</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Bansal, Nikhil</creator><creator>Spencer, Joel H.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202012</creationdate><title>On‐line balancing of random inputs</title><author>Bansal, Nikhil ; Spencer, Joel H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3325-58abac75e393e1977b45de0d02d355467485e38ea15850503dd0c094bed5072e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Balancing</topic><topic>Computer &amp; video games</topic><topic>discrepancy</topic><topic>online algorithms</topic><topic>random vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bansal, Nikhil</creatorcontrib><creatorcontrib>Spencer, Joel H.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Random structures &amp; algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bansal, Nikhil</au><au>Spencer, Joel H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On‐line balancing of random inputs</atitle><jtitle>Random structures &amp; algorithms</jtitle><date>2020-12</date><risdate>2020</risdate><volume>57</volume><issue>4</issue><spage>879</spage><epage>891</epage><pages>879-891</pages><issn>1042-9832</issn><eissn>1098-2418</eissn><abstract>We consider an online vector balancing game where vectors vt, chosen uniformly at random in {− 1, + 1}n, arrive over time and a sign xt ∈ {− 1, + 1} must be picked immediately upon the arrival of vt. The goal is to minimize the L∞ norm of the signed sum ∑txtvt. We give an online strategy for picking the signs xt that has value O(n1/2) with high probability. Up to constants, this is the best possible even when the vectors are given in advance.</abstract><cop>New York</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/rsa.20955</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1042-9832
ispartof Random structures & algorithms, 2020-12, Vol.57 (4), p.879-891
issn 1042-9832
1098-2418
language eng
recordid cdi_proquest_journals_2454054747
source Wiley
subjects Balancing
Computer & video games
discrepancy
online algorithms
random vectors
title On‐line balancing of random inputs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T16%3A38%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%E2%80%90line%20balancing%20of%20random%20inputs&rft.jtitle=Random%20structures%20&%20algorithms&rft.au=Bansal,%20Nikhil&rft.date=2020-12&rft.volume=57&rft.issue=4&rft.spage=879&rft.epage=891&rft.pages=879-891&rft.issn=1042-9832&rft.eissn=1098-2418&rft_id=info:doi/10.1002/rsa.20955&rft_dat=%3Cproquest_cross%3E2454054747%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3325-58abac75e393e1977b45de0d02d355467485e38ea15850503dd0c094bed5072e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2454054747&rft_id=info:pmid/&rfr_iscdi=true