Loading…
Video Synopsis Based on Attention Mechanism and Local Transparent Processing
The increased number of video cameras makes an explosive growth in the amount of captured video, especially the increase of millions of surveillance cameras that operate 24 hours a day. Since video browsing and retrieval is time consuming, while video synopsis is one of the most effective ways for b...
Saved in:
Published in: | IEEE access 2020, Vol.8, p.92603-92614 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The increased number of video cameras makes an explosive growth in the amount of captured video, especially the increase of millions of surveillance cameras that operate 24 hours a day. Since video browsing and retrieval is time consuming, while video synopsis is one of the most effective ways for browsing and indexing such video that enables the review of hours of video in just minutes. How to generate the video synopsis and preserve the essential activities in the original video is still a costly and labor-intensive and time-intensive work. This paper proposes an approach to generating video synopsis with complete foreground and clearer trajectory of moving objects. Firstly, the one-stage CNN-based object detecting has been employed in object extraction and classification. Then, combining integrating the attention-RetinaNet with Local Transparency-Handling Collision (LTHC) algorithm is given out which results in the trajectory combination optimization and makes the trajectory of the moving object more clearly. Finally, the experiments show that the useful video information is fully retained in the result video, the detection accuracy is improved by 4.87% and the compression ratio reaches 4.94, but the reduction of detection time is not obvious. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2020.2994613 |