Loading…
Integral Reinforcement Learning Control for a Class of High-Order Multivariable Nonlinear Dynamics With Unknown Control Coefficients
This paper develops an integral reinforcement learning (IRL) controller for a class of high-order multivariable nonlinear systems with unknown control coefficients (UCCs). A new long-term performance index is first presented, and then the critic neural network (NN) and the action NN are presented to...
Saved in:
Published in: | IEEE access 2020, Vol.8, p.86223-86229 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper develops an integral reinforcement learning (IRL) controller for a class of high-order multivariable nonlinear systems with unknown control coefficients (UCCs). A new long-term performance index is first presented, and then the critic neural network (NN) and the action NN are presented to estimate the unobtainable long-term performance index and the unknown drift of systems, respectively. By combining the critic and action NNs with Nussbaum-type functions, the IRL controllers for high-order, nonsquare multivariable systems are proposed to cope with the problem of UCCs. The analysis are given to illustrate that the stability of the closed-loop system can be obtained, and the signals of the closed-loop systems are semiglobally uniformly ultimately bounded (UUB). Finally, one simulation example is provided to show the effectiveness of the proposed IRL controllers. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2020.2993265 |