Loading…

Spectral triangles of non-selfadjoint Hill and Dirac operators

This is a survey of results from the last 10 to 12 years about the structure of the spectra of Hill-Schrödinger and Dirac operators. Let be a Hill operator or a one-dimensional Dirac operator on the interval . If is considered with Dirichlet, periodic, or antiperiodic boundary conditions, then the c...

Full description

Saved in:
Bibliographic Details
Published in:Russian mathematical surveys 2020-08, Vol.75 (4), p.587-626
Main Authors: Djakov, P. B., Mityagin, B. S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c278t-87b1e2559f5641dd11ac88bae79032d08c69f205d75c498e87a617310302eac13
cites cdi_FETCH-LOGICAL-c278t-87b1e2559f5641dd11ac88bae79032d08c69f205d75c498e87a617310302eac13
container_end_page 626
container_issue 4
container_start_page 587
container_title Russian mathematical surveys
container_volume 75
creator Djakov, P. B.
Mityagin, B. S.
description This is a survey of results from the last 10 to 12 years about the structure of the spectra of Hill-Schrödinger and Dirac operators. Let be a Hill operator or a one-dimensional Dirac operator on the interval . If is considered with Dirichlet, periodic, or antiperiodic boundary conditions, then the corresponding spectra are discrete and, for sufficiently large , close to in the Hill case or close to in the Dirac case (). There is one Dirichlet eigenvalue and two periodic (if is even) or antiperiodic (if is odd) eigenvalues and (counted with multiplicity). Asymptotic estimates are given for the spectral gaps and the deviations in terms of the Fourier coefficients of the potentials. Moreover, precise asymptotic expressions for and are found for special potentials that are trigonometric polynomials. Bibliography: 45 titles.
doi_str_mv 10.1070/RM9957
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2454437848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2454437848</sourcerecordid><originalsourceid>FETCH-LOGICAL-c278t-87b1e2559f5641dd11ac88bae79032d08c69f205d75c498e87a617310302eac13</originalsourceid><addsrcrecordid>eNpd0MtKxDAYBeAgCtZRnyEouIv-uTXJRpAZdYQRwcu6ZJJUWmpTk87Ct7dSQXB1Nh_nwEHolMIlBQVXz4_GSLWHCipKTYRmZh8VALwkwJQ5REc5twC01JwV6PplCG5MtsNjamz_3oWMY4372JMcutr6Njb9iNdN12Hbe7xqknU4DiHZMaZ8jA5q2-Vw8psL9HZ3-7pck83T_cPyZkMcU3okWm1pYFKaWpaCek-pdVpvbVAGOPOgXWlqBtIr6YTRQStbUsUpcGDBOsoX6HzuHVL83IU8Vm3cpX6arJiQQnClhZ7UxaxcijmnUFdDaj5s-qooVD_fVPM3EzybYROHv6Z_6Bue_18g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454437848</pqid></control><display><type>article</type><title>Spectral triangles of non-selfadjoint Hill and Dirac operators</title><source>Institute of Physics IOPscience extra</source><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Djakov, P. B. ; Mityagin, B. S.</creator><creatorcontrib>Djakov, P. B. ; Mityagin, B. S.</creatorcontrib><description>This is a survey of results from the last 10 to 12 years about the structure of the spectra of Hill-Schrödinger and Dirac operators. Let be a Hill operator or a one-dimensional Dirac operator on the interval . If is considered with Dirichlet, periodic, or antiperiodic boundary conditions, then the corresponding spectra are discrete and, for sufficiently large , close to in the Hill case or close to in the Dirac case (). There is one Dirichlet eigenvalue and two periodic (if is even) or antiperiodic (if is odd) eigenvalues and (counted with multiplicity). Asymptotic estimates are given for the spectral gaps and the deviations in terms of the Fourier coefficients of the potentials. Moreover, precise asymptotic expressions for and are found for special potentials that are trigonometric polynomials. Bibliography: 45 titles.</description><identifier>ISSN: 0036-0279</identifier><identifier>EISSN: 1468-4829</identifier><identifier>DOI: 10.1070/RM9957</identifier><language>eng</language><publisher>London: London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</publisher><subject>antiperiodic boundary conditions ; Asymptotic properties ; Boundary conditions ; Dirichlet boundary conditions ; Dirichlet problem ; Eigenvalues ; Hill operator ; one-dimensional Dirac operator ; Operators ; periodic boundary conditions ; Polynomials ; Spectra ; Triangles</subject><ispartof>Russian mathematical surveys, 2020-08, Vol.75 (4), p.587-626</ispartof><rights>2020 Russian Academy of Sciences (DoM), London Mathematical Society, IOP Publishing Limited</rights><rights>Copyright IOP Publishing Aug 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c278t-87b1e2559f5641dd11ac88bae79032d08c69f205d75c498e87a617310302eac13</citedby><cites>FETCH-LOGICAL-c278t-87b1e2559f5641dd11ac88bae79032d08c69f205d75c498e87a617310302eac13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1070/RM9957/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27922,27923,38866,53838</link.rule.ids></links><search><creatorcontrib>Djakov, P. B.</creatorcontrib><creatorcontrib>Mityagin, B. S.</creatorcontrib><title>Spectral triangles of non-selfadjoint Hill and Dirac operators</title><title>Russian mathematical surveys</title><addtitle>RMS</addtitle><addtitle>Russ. Math. Surv</addtitle><description>This is a survey of results from the last 10 to 12 years about the structure of the spectra of Hill-Schrödinger and Dirac operators. Let be a Hill operator or a one-dimensional Dirac operator on the interval . If is considered with Dirichlet, periodic, or antiperiodic boundary conditions, then the corresponding spectra are discrete and, for sufficiently large , close to in the Hill case or close to in the Dirac case (). There is one Dirichlet eigenvalue and two periodic (if is even) or antiperiodic (if is odd) eigenvalues and (counted with multiplicity). Asymptotic estimates are given for the spectral gaps and the deviations in terms of the Fourier coefficients of the potentials. Moreover, precise asymptotic expressions for and are found for special potentials that are trigonometric polynomials. Bibliography: 45 titles.</description><subject>antiperiodic boundary conditions</subject><subject>Asymptotic properties</subject><subject>Boundary conditions</subject><subject>Dirichlet boundary conditions</subject><subject>Dirichlet problem</subject><subject>Eigenvalues</subject><subject>Hill operator</subject><subject>one-dimensional Dirac operator</subject><subject>Operators</subject><subject>periodic boundary conditions</subject><subject>Polynomials</subject><subject>Spectra</subject><subject>Triangles</subject><issn>0036-0279</issn><issn>1468-4829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpd0MtKxDAYBeAgCtZRnyEouIv-uTXJRpAZdYQRwcu6ZJJUWmpTk87Ct7dSQXB1Nh_nwEHolMIlBQVXz4_GSLWHCipKTYRmZh8VALwkwJQ5REc5twC01JwV6PplCG5MtsNjamz_3oWMY4372JMcutr6Njb9iNdN12Hbe7xqknU4DiHZMaZ8jA5q2-Vw8psL9HZ3-7pck83T_cPyZkMcU3okWm1pYFKaWpaCek-pdVpvbVAGOPOgXWlqBtIr6YTRQStbUsUpcGDBOsoX6HzuHVL83IU8Vm3cpX6arJiQQnClhZ7UxaxcijmnUFdDaj5s-qooVD_fVPM3EzybYROHv6Z_6Bue_18g</recordid><startdate>202008</startdate><enddate>202008</enddate><creator>Djakov, P. B.</creator><creator>Mityagin, B. S.</creator><general>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>202008</creationdate><title>Spectral triangles of non-selfadjoint Hill and Dirac operators</title><author>Djakov, P. B. ; Mityagin, B. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c278t-87b1e2559f5641dd11ac88bae79032d08c69f205d75c498e87a617310302eac13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>antiperiodic boundary conditions</topic><topic>Asymptotic properties</topic><topic>Boundary conditions</topic><topic>Dirichlet boundary conditions</topic><topic>Dirichlet problem</topic><topic>Eigenvalues</topic><topic>Hill operator</topic><topic>one-dimensional Dirac operator</topic><topic>Operators</topic><topic>periodic boundary conditions</topic><topic>Polynomials</topic><topic>Spectra</topic><topic>Triangles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Djakov, P. B.</creatorcontrib><creatorcontrib>Mityagin, B. S.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Russian mathematical surveys</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Djakov, P. B.</au><au>Mityagin, B. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral triangles of non-selfadjoint Hill and Dirac operators</atitle><jtitle>Russian mathematical surveys</jtitle><stitle>RMS</stitle><addtitle>Russ. Math. Surv</addtitle><date>2020-08</date><risdate>2020</risdate><volume>75</volume><issue>4</issue><spage>587</spage><epage>626</epage><pages>587-626</pages><issn>0036-0279</issn><eissn>1468-4829</eissn><abstract>This is a survey of results from the last 10 to 12 years about the structure of the spectra of Hill-Schrödinger and Dirac operators. Let be a Hill operator or a one-dimensional Dirac operator on the interval . If is considered with Dirichlet, periodic, or antiperiodic boundary conditions, then the corresponding spectra are discrete and, for sufficiently large , close to in the Hill case or close to in the Dirac case (). There is one Dirichlet eigenvalue and two periodic (if is even) or antiperiodic (if is odd) eigenvalues and (counted with multiplicity). Asymptotic estimates are given for the spectral gaps and the deviations in terms of the Fourier coefficients of the potentials. Moreover, precise asymptotic expressions for and are found for special potentials that are trigonometric polynomials. Bibliography: 45 titles.</abstract><cop>London</cop><pub>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</pub><doi>10.1070/RM9957</doi><tpages>40</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-0279
ispartof Russian mathematical surveys, 2020-08, Vol.75 (4), p.587-626
issn 0036-0279
1468-4829
language eng
recordid cdi_proquest_journals_2454437848
source Institute of Physics IOPscience extra; Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects antiperiodic boundary conditions
Asymptotic properties
Boundary conditions
Dirichlet boundary conditions
Dirichlet problem
Eigenvalues
Hill operator
one-dimensional Dirac operator
Operators
periodic boundary conditions
Polynomials
Spectra
Triangles
title Spectral triangles of non-selfadjoint Hill and Dirac operators
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A16%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20triangles%20of%20non-selfadjoint%20Hill%20and%20Dirac%20operators&rft.jtitle=Russian%20mathematical%20surveys&rft.au=Djakov,%20P.%20B.&rft.date=2020-08&rft.volume=75&rft.issue=4&rft.spage=587&rft.epage=626&rft.pages=587-626&rft.issn=0036-0279&rft.eissn=1468-4829&rft_id=info:doi/10.1070/RM9957&rft_dat=%3Cproquest_cross%3E2454437848%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c278t-87b1e2559f5641dd11ac88bae79032d08c69f205d75c498e87a617310302eac13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2454437848&rft_id=info:pmid/&rfr_iscdi=true