Loading…
Spectral triangles of non-selfadjoint Hill and Dirac operators
This is a survey of results from the last 10 to 12 years about the structure of the spectra of Hill-Schrödinger and Dirac operators. Let be a Hill operator or a one-dimensional Dirac operator on the interval . If is considered with Dirichlet, periodic, or antiperiodic boundary conditions, then the c...
Saved in:
Published in: | Russian mathematical surveys 2020-08, Vol.75 (4), p.587-626 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c278t-87b1e2559f5641dd11ac88bae79032d08c69f205d75c498e87a617310302eac13 |
---|---|
cites | cdi_FETCH-LOGICAL-c278t-87b1e2559f5641dd11ac88bae79032d08c69f205d75c498e87a617310302eac13 |
container_end_page | 626 |
container_issue | 4 |
container_start_page | 587 |
container_title | Russian mathematical surveys |
container_volume | 75 |
creator | Djakov, P. B. Mityagin, B. S. |
description | This is a survey of results from the last 10 to 12 years about the structure of the spectra of Hill-Schrödinger and Dirac operators. Let be a Hill operator or a one-dimensional Dirac operator on the interval . If is considered with Dirichlet, periodic, or antiperiodic boundary conditions, then the corresponding spectra are discrete and, for sufficiently large , close to in the Hill case or close to in the Dirac case (). There is one Dirichlet eigenvalue and two periodic (if is even) or antiperiodic (if is odd) eigenvalues and (counted with multiplicity). Asymptotic estimates are given for the spectral gaps and the deviations in terms of the Fourier coefficients of the potentials. Moreover, precise asymptotic expressions for and are found for special potentials that are trigonometric polynomials. Bibliography: 45 titles. |
doi_str_mv | 10.1070/RM9957 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2454437848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2454437848</sourcerecordid><originalsourceid>FETCH-LOGICAL-c278t-87b1e2559f5641dd11ac88bae79032d08c69f205d75c498e87a617310302eac13</originalsourceid><addsrcrecordid>eNpd0MtKxDAYBeAgCtZRnyEouIv-uTXJRpAZdYQRwcu6ZJJUWmpTk87Ct7dSQXB1Nh_nwEHolMIlBQVXz4_GSLWHCipKTYRmZh8VALwkwJQ5REc5twC01JwV6PplCG5MtsNjamz_3oWMY4372JMcutr6Njb9iNdN12Hbe7xqknU4DiHZMaZ8jA5q2-Vw8psL9HZ3-7pck83T_cPyZkMcU3okWm1pYFKaWpaCek-pdVpvbVAGOPOgXWlqBtIr6YTRQStbUsUpcGDBOsoX6HzuHVL83IU8Vm3cpX6arJiQQnClhZ7UxaxcijmnUFdDaj5s-qooVD_fVPM3EzybYROHv6Z_6Bue_18g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454437848</pqid></control><display><type>article</type><title>Spectral triangles of non-selfadjoint Hill and Dirac operators</title><source>Institute of Physics IOPscience extra</source><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Djakov, P. B. ; Mityagin, B. S.</creator><creatorcontrib>Djakov, P. B. ; Mityagin, B. S.</creatorcontrib><description>This is a survey of results from the last 10 to 12 years about the structure of the spectra of Hill-Schrödinger and Dirac operators. Let be a Hill operator or a one-dimensional Dirac operator on the interval . If is considered with Dirichlet, periodic, or antiperiodic boundary conditions, then the corresponding spectra are discrete and, for sufficiently large , close to in the Hill case or close to in the Dirac case (). There is one Dirichlet eigenvalue and two periodic (if is even) or antiperiodic (if is odd) eigenvalues and (counted with multiplicity). Asymptotic estimates are given for the spectral gaps and the deviations in terms of the Fourier coefficients of the potentials. Moreover, precise asymptotic expressions for and are found for special potentials that are trigonometric polynomials. Bibliography: 45 titles.</description><identifier>ISSN: 0036-0279</identifier><identifier>EISSN: 1468-4829</identifier><identifier>DOI: 10.1070/RM9957</identifier><language>eng</language><publisher>London: London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</publisher><subject>antiperiodic boundary conditions ; Asymptotic properties ; Boundary conditions ; Dirichlet boundary conditions ; Dirichlet problem ; Eigenvalues ; Hill operator ; one-dimensional Dirac operator ; Operators ; periodic boundary conditions ; Polynomials ; Spectra ; Triangles</subject><ispartof>Russian mathematical surveys, 2020-08, Vol.75 (4), p.587-626</ispartof><rights>2020 Russian Academy of Sciences (DoM), London Mathematical Society, IOP Publishing Limited</rights><rights>Copyright IOP Publishing Aug 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c278t-87b1e2559f5641dd11ac88bae79032d08c69f205d75c498e87a617310302eac13</citedby><cites>FETCH-LOGICAL-c278t-87b1e2559f5641dd11ac88bae79032d08c69f205d75c498e87a617310302eac13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1070/RM9957/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27922,27923,38866,53838</link.rule.ids></links><search><creatorcontrib>Djakov, P. B.</creatorcontrib><creatorcontrib>Mityagin, B. S.</creatorcontrib><title>Spectral triangles of non-selfadjoint Hill and Dirac operators</title><title>Russian mathematical surveys</title><addtitle>RMS</addtitle><addtitle>Russ. Math. Surv</addtitle><description>This is a survey of results from the last 10 to 12 years about the structure of the spectra of Hill-Schrödinger and Dirac operators. Let be a Hill operator or a one-dimensional Dirac operator on the interval . If is considered with Dirichlet, periodic, or antiperiodic boundary conditions, then the corresponding spectra are discrete and, for sufficiently large , close to in the Hill case or close to in the Dirac case (). There is one Dirichlet eigenvalue and two periodic (if is even) or antiperiodic (if is odd) eigenvalues and (counted with multiplicity). Asymptotic estimates are given for the spectral gaps and the deviations in terms of the Fourier coefficients of the potentials. Moreover, precise asymptotic expressions for and are found for special potentials that are trigonometric polynomials. Bibliography: 45 titles.</description><subject>antiperiodic boundary conditions</subject><subject>Asymptotic properties</subject><subject>Boundary conditions</subject><subject>Dirichlet boundary conditions</subject><subject>Dirichlet problem</subject><subject>Eigenvalues</subject><subject>Hill operator</subject><subject>one-dimensional Dirac operator</subject><subject>Operators</subject><subject>periodic boundary conditions</subject><subject>Polynomials</subject><subject>Spectra</subject><subject>Triangles</subject><issn>0036-0279</issn><issn>1468-4829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpd0MtKxDAYBeAgCtZRnyEouIv-uTXJRpAZdYQRwcu6ZJJUWmpTk87Ct7dSQXB1Nh_nwEHolMIlBQVXz4_GSLWHCipKTYRmZh8VALwkwJQ5REc5twC01JwV6PplCG5MtsNjamz_3oWMY4372JMcutr6Njb9iNdN12Hbe7xqknU4DiHZMaZ8jA5q2-Vw8psL9HZ3-7pck83T_cPyZkMcU3okWm1pYFKaWpaCek-pdVpvbVAGOPOgXWlqBtIr6YTRQStbUsUpcGDBOsoX6HzuHVL83IU8Vm3cpX6arJiQQnClhZ7UxaxcijmnUFdDaj5s-qooVD_fVPM3EzybYROHv6Z_6Bue_18g</recordid><startdate>202008</startdate><enddate>202008</enddate><creator>Djakov, P. B.</creator><creator>Mityagin, B. S.</creator><general>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>202008</creationdate><title>Spectral triangles of non-selfadjoint Hill and Dirac operators</title><author>Djakov, P. B. ; Mityagin, B. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c278t-87b1e2559f5641dd11ac88bae79032d08c69f205d75c498e87a617310302eac13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>antiperiodic boundary conditions</topic><topic>Asymptotic properties</topic><topic>Boundary conditions</topic><topic>Dirichlet boundary conditions</topic><topic>Dirichlet problem</topic><topic>Eigenvalues</topic><topic>Hill operator</topic><topic>one-dimensional Dirac operator</topic><topic>Operators</topic><topic>periodic boundary conditions</topic><topic>Polynomials</topic><topic>Spectra</topic><topic>Triangles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Djakov, P. B.</creatorcontrib><creatorcontrib>Mityagin, B. S.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Russian mathematical surveys</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Djakov, P. B.</au><au>Mityagin, B. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral triangles of non-selfadjoint Hill and Dirac operators</atitle><jtitle>Russian mathematical surveys</jtitle><stitle>RMS</stitle><addtitle>Russ. Math. Surv</addtitle><date>2020-08</date><risdate>2020</risdate><volume>75</volume><issue>4</issue><spage>587</spage><epage>626</epage><pages>587-626</pages><issn>0036-0279</issn><eissn>1468-4829</eissn><abstract>This is a survey of results from the last 10 to 12 years about the structure of the spectra of Hill-Schrödinger and Dirac operators. Let be a Hill operator or a one-dimensional Dirac operator on the interval . If is considered with Dirichlet, periodic, or antiperiodic boundary conditions, then the corresponding spectra are discrete and, for sufficiently large , close to in the Hill case or close to in the Dirac case (). There is one Dirichlet eigenvalue and two periodic (if is even) or antiperiodic (if is odd) eigenvalues and (counted with multiplicity). Asymptotic estimates are given for the spectral gaps and the deviations in terms of the Fourier coefficients of the potentials. Moreover, precise asymptotic expressions for and are found for special potentials that are trigonometric polynomials. Bibliography: 45 titles.</abstract><cop>London</cop><pub>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</pub><doi>10.1070/RM9957</doi><tpages>40</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-0279 |
ispartof | Russian mathematical surveys, 2020-08, Vol.75 (4), p.587-626 |
issn | 0036-0279 1468-4829 |
language | eng |
recordid | cdi_proquest_journals_2454437848 |
source | Institute of Physics IOPscience extra; Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
subjects | antiperiodic boundary conditions Asymptotic properties Boundary conditions Dirichlet boundary conditions Dirichlet problem Eigenvalues Hill operator one-dimensional Dirac operator Operators periodic boundary conditions Polynomials Spectra Triangles |
title | Spectral triangles of non-selfadjoint Hill and Dirac operators |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A16%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20triangles%20of%20non-selfadjoint%20Hill%20and%20Dirac%20operators&rft.jtitle=Russian%20mathematical%20surveys&rft.au=Djakov,%20P.%20B.&rft.date=2020-08&rft.volume=75&rft.issue=4&rft.spage=587&rft.epage=626&rft.pages=587-626&rft.issn=0036-0279&rft.eissn=1468-4829&rft_id=info:doi/10.1070/RM9957&rft_dat=%3Cproquest_cross%3E2454437848%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c278t-87b1e2559f5641dd11ac88bae79032d08c69f205d75c498e87a617310302eac13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2454437848&rft_id=info:pmid/&rfr_iscdi=true |