Loading…

Task Allocation Mechanism of Power Internet of Things based on Cooperative Edge Computing

Edge computing can be widely used in unmanned aerial vehicle (UAV) inspection, field operation control, power consumption information collection and other businesses in the power Internet of Things scene. Edge computing offloads functions such as data processing and applications to network edge node...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2020-01, Vol.8, p.1-1
Main Authors: Wang, Qianjun, Shao, Sujie, Guo, Shaoyong, Qiu, Xuesong, Wang, Zhili
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-44d23a8c165113d4cf3a0c6be7376f1600819c9990cc41e3f9ef3dfd104559613
cites cdi_FETCH-LOGICAL-c408t-44d23a8c165113d4cf3a0c6be7376f1600819c9990cc41e3f9ef3dfd104559613
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 8
creator Wang, Qianjun
Shao, Sujie
Guo, Shaoyong
Qiu, Xuesong
Wang, Zhili
description Edge computing can be widely used in unmanned aerial vehicle (UAV) inspection, field operation control, power consumption information collection and other businesses in the power Internet of Things scene. Edge computing offloads functions such as data processing and applications to network edge nodes near the terminals to provide low-latency services and ensure service quality. However, with the explosive growth of business terminals, the capacity of single edge node is limited and it is difficult to meet all business requirements at the same time. Therefore, this paper proposes a task allocation mechanism based on cooperative edge computing. Firstly, a task allocation model based on cooperation of two edge nodes is established to minimize the average task completion delay while meeting business requirements. Secondly, the Two-edge-node Cooperative-task Allocation based on Improved Particle Swarm Optimization (TCA-IPSO) algorithm is proposed, which applies the crossover and mutation strategy in genetic algorithm to improve the particle swarm optimization algorithm, and solves the problem that the task allocation scheme in cooperation is prone to fall into a local optimum. Finally the simulation results show that the proposed TCA-IPSO algorithm reduces the average task completion delay by 53.8% and 36.0% compared to the benchmark and QoS-based Task Distribution (QBTD) algorithm.
doi_str_mv 10.1109/ACCESS.2020.3020233
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2454677881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9181621</ieee_id><doaj_id>oai_doaj_org_article_ca33fc9b153849de9b45b4f9fdf088f3</doaj_id><sourcerecordid>2454677881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-44d23a8c165113d4cf3a0c6be7376f1600819c9990cc41e3f9ef3dfd104559613</originalsourceid><addsrcrecordid>eNpNkV9LwzAUxYsoOHSfYC8FnzeT3vRPHkeZOpgobD74FNLkZuvcmpl0it_e1I5hHpJwOOfcC78oGlEyoZTw-2lZzpbLSUISMoFwJQAX0SChGR9DCtnlv_91NPR-S8IpgpTmg-h9Jf1HPN3trJJtbZv4GdVGNrXfx9bEr_YbXTxvWnQNtp2y2tTN2seV9KjjYC-tPaAL0S-MZ3qNQdgfjm0w3UZXRu48Dk_vTfT2MFuVT-PFy-O8nC7GipGiHTOmE5CFollKKWimDEiisgpzyDNDs25VrjjnRClGEQxHA9poSlia8ozCTTTve7WVW3Fw9V66H2FlLf4E69ZCurZWOxRKAhjFK5pCwbhGXrG0YoYbbUhRGAhdd33XwdnPI_pWbO3RNWF9kbCUZXleFN1E6F3KWe8dmvNUSkSHRPRIRIdEnJCE1KhP1Yh4TnAaSCQUfgHEwYZq</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454677881</pqid></control><display><type>article</type><title>Task Allocation Mechanism of Power Internet of Things based on Cooperative Edge Computing</title><source>IEEE Xplore Open Access Journals</source><creator>Wang, Qianjun ; Shao, Sujie ; Guo, Shaoyong ; Qiu, Xuesong ; Wang, Zhili</creator><creatorcontrib>Wang, Qianjun ; Shao, Sujie ; Guo, Shaoyong ; Qiu, Xuesong ; Wang, Zhili</creatorcontrib><description>Edge computing can be widely used in unmanned aerial vehicle (UAV) inspection, field operation control, power consumption information collection and other businesses in the power Internet of Things scene. Edge computing offloads functions such as data processing and applications to network edge nodes near the terminals to provide low-latency services and ensure service quality. However, with the explosive growth of business terminals, the capacity of single edge node is limited and it is difficult to meet all business requirements at the same time. Therefore, this paper proposes a task allocation mechanism based on cooperative edge computing. Firstly, a task allocation model based on cooperation of two edge nodes is established to minimize the average task completion delay while meeting business requirements. Secondly, the Two-edge-node Cooperative-task Allocation based on Improved Particle Swarm Optimization (TCA-IPSO) algorithm is proposed, which applies the crossover and mutation strategy in genetic algorithm to improve the particle swarm optimization algorithm, and solves the problem that the task allocation scheme in cooperation is prone to fall into a local optimum. Finally the simulation results show that the proposed TCA-IPSO algorithm reduces the average task completion delay by 53.8% and 36.0% compared to the benchmark and QoS-based Task Distribution (QBTD) algorithm.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3020233</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Business ; Computational modeling ; Cooperation ; Cooperative edge computing ; Crossovers ; Data processing ; Delays ; Edge computing ; Genetic algorithms ; Inspection ; Internet of Things ; Network latency ; Nodes ; Particle swarm optimization ; Power consumption ; Power Internet of Things ; Resource management ; Task allocation ; Task analysis ; Task completion delay ; Terminals ; Unmanned aerial vehicles</subject><ispartof>IEEE access, 2020-01, Vol.8, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-44d23a8c165113d4cf3a0c6be7376f1600819c9990cc41e3f9ef3dfd104559613</citedby><cites>FETCH-LOGICAL-c408t-44d23a8c165113d4cf3a0c6be7376f1600819c9990cc41e3f9ef3dfd104559613</cites><orcidid>0000-0003-2033-8431 ; 0000-0003-3945-0706 ; 0000-0002-7899-539X ; 0000-0002-5810-561X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9181621$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,27614,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Wang, Qianjun</creatorcontrib><creatorcontrib>Shao, Sujie</creatorcontrib><creatorcontrib>Guo, Shaoyong</creatorcontrib><creatorcontrib>Qiu, Xuesong</creatorcontrib><creatorcontrib>Wang, Zhili</creatorcontrib><title>Task Allocation Mechanism of Power Internet of Things based on Cooperative Edge Computing</title><title>IEEE access</title><addtitle>Access</addtitle><description>Edge computing can be widely used in unmanned aerial vehicle (UAV) inspection, field operation control, power consumption information collection and other businesses in the power Internet of Things scene. Edge computing offloads functions such as data processing and applications to network edge nodes near the terminals to provide low-latency services and ensure service quality. However, with the explosive growth of business terminals, the capacity of single edge node is limited and it is difficult to meet all business requirements at the same time. Therefore, this paper proposes a task allocation mechanism based on cooperative edge computing. Firstly, a task allocation model based on cooperation of two edge nodes is established to minimize the average task completion delay while meeting business requirements. Secondly, the Two-edge-node Cooperative-task Allocation based on Improved Particle Swarm Optimization (TCA-IPSO) algorithm is proposed, which applies the crossover and mutation strategy in genetic algorithm to improve the particle swarm optimization algorithm, and solves the problem that the task allocation scheme in cooperation is prone to fall into a local optimum. Finally the simulation results show that the proposed TCA-IPSO algorithm reduces the average task completion delay by 53.8% and 36.0% compared to the benchmark and QoS-based Task Distribution (QBTD) algorithm.</description><subject>Algorithms</subject><subject>Business</subject><subject>Computational modeling</subject><subject>Cooperation</subject><subject>Cooperative edge computing</subject><subject>Crossovers</subject><subject>Data processing</subject><subject>Delays</subject><subject>Edge computing</subject><subject>Genetic algorithms</subject><subject>Inspection</subject><subject>Internet of Things</subject><subject>Network latency</subject><subject>Nodes</subject><subject>Particle swarm optimization</subject><subject>Power consumption</subject><subject>Power Internet of Things</subject><subject>Resource management</subject><subject>Task allocation</subject><subject>Task analysis</subject><subject>Task completion delay</subject><subject>Terminals</subject><subject>Unmanned aerial vehicles</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkV9LwzAUxYsoOHSfYC8FnzeT3vRPHkeZOpgobD74FNLkZuvcmpl0it_e1I5hHpJwOOfcC78oGlEyoZTw-2lZzpbLSUISMoFwJQAX0SChGR9DCtnlv_91NPR-S8IpgpTmg-h9Jf1HPN3trJJtbZv4GdVGNrXfx9bEr_YbXTxvWnQNtp2y2tTN2seV9KjjYC-tPaAL0S-MZ3qNQdgfjm0w3UZXRu48Dk_vTfT2MFuVT-PFy-O8nC7GipGiHTOmE5CFollKKWimDEiisgpzyDNDs25VrjjnRClGEQxHA9poSlia8ozCTTTve7WVW3Fw9V66H2FlLf4E69ZCurZWOxRKAhjFK5pCwbhGXrG0YoYbbUhRGAhdd33XwdnPI_pWbO3RNWF9kbCUZXleFN1E6F3KWe8dmvNUSkSHRPRIRIdEnJCE1KhP1Yh4TnAaSCQUfgHEwYZq</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Wang, Qianjun</creator><creator>Shao, Sujie</creator><creator>Guo, Shaoyong</creator><creator>Qiu, Xuesong</creator><creator>Wang, Zhili</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2033-8431</orcidid><orcidid>https://orcid.org/0000-0003-3945-0706</orcidid><orcidid>https://orcid.org/0000-0002-7899-539X</orcidid><orcidid>https://orcid.org/0000-0002-5810-561X</orcidid></search><sort><creationdate>20200101</creationdate><title>Task Allocation Mechanism of Power Internet of Things based on Cooperative Edge Computing</title><author>Wang, Qianjun ; Shao, Sujie ; Guo, Shaoyong ; Qiu, Xuesong ; Wang, Zhili</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-44d23a8c165113d4cf3a0c6be7376f1600819c9990cc41e3f9ef3dfd104559613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Business</topic><topic>Computational modeling</topic><topic>Cooperation</topic><topic>Cooperative edge computing</topic><topic>Crossovers</topic><topic>Data processing</topic><topic>Delays</topic><topic>Edge computing</topic><topic>Genetic algorithms</topic><topic>Inspection</topic><topic>Internet of Things</topic><topic>Network latency</topic><topic>Nodes</topic><topic>Particle swarm optimization</topic><topic>Power consumption</topic><topic>Power Internet of Things</topic><topic>Resource management</topic><topic>Task allocation</topic><topic>Task analysis</topic><topic>Task completion delay</topic><topic>Terminals</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Qianjun</creatorcontrib><creatorcontrib>Shao, Sujie</creatorcontrib><creatorcontrib>Guo, Shaoyong</creatorcontrib><creatorcontrib>Qiu, Xuesong</creatorcontrib><creatorcontrib>Wang, Zhili</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Qianjun</au><au>Shao, Sujie</au><au>Guo, Shaoyong</au><au>Qiu, Xuesong</au><au>Wang, Zhili</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Task Allocation Mechanism of Power Internet of Things based on Cooperative Edge Computing</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Edge computing can be widely used in unmanned aerial vehicle (UAV) inspection, field operation control, power consumption information collection and other businesses in the power Internet of Things scene. Edge computing offloads functions such as data processing and applications to network edge nodes near the terminals to provide low-latency services and ensure service quality. However, with the explosive growth of business terminals, the capacity of single edge node is limited and it is difficult to meet all business requirements at the same time. Therefore, this paper proposes a task allocation mechanism based on cooperative edge computing. Firstly, a task allocation model based on cooperation of two edge nodes is established to minimize the average task completion delay while meeting business requirements. Secondly, the Two-edge-node Cooperative-task Allocation based on Improved Particle Swarm Optimization (TCA-IPSO) algorithm is proposed, which applies the crossover and mutation strategy in genetic algorithm to improve the particle swarm optimization algorithm, and solves the problem that the task allocation scheme in cooperation is prone to fall into a local optimum. Finally the simulation results show that the proposed TCA-IPSO algorithm reduces the average task completion delay by 53.8% and 36.0% compared to the benchmark and QoS-based Task Distribution (QBTD) algorithm.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3020233</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2033-8431</orcidid><orcidid>https://orcid.org/0000-0003-3945-0706</orcidid><orcidid>https://orcid.org/0000-0002-7899-539X</orcidid><orcidid>https://orcid.org/0000-0002-5810-561X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020-01, Vol.8, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2454677881
source IEEE Xplore Open Access Journals
subjects Algorithms
Business
Computational modeling
Cooperation
Cooperative edge computing
Crossovers
Data processing
Delays
Edge computing
Genetic algorithms
Inspection
Internet of Things
Network latency
Nodes
Particle swarm optimization
Power consumption
Power Internet of Things
Resource management
Task allocation
Task analysis
Task completion delay
Terminals
Unmanned aerial vehicles
title Task Allocation Mechanism of Power Internet of Things based on Cooperative Edge Computing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A53%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Task%20Allocation%20Mechanism%20of%20Power%20Internet%20of%20Things%20based%20on%20Cooperative%20Edge%20Computing&rft.jtitle=IEEE%20access&rft.au=Wang,%20Qianjun&rft.date=2020-01-01&rft.volume=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3020233&rft_dat=%3Cproquest_ieee_%3E2454677881%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-44d23a8c165113d4cf3a0c6be7376f1600819c9990cc41e3f9ef3dfd104559613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2454677881&rft_id=info:pmid/&rft_ieee_id=9181621&rfr_iscdi=true