Loading…
Task Allocation Mechanism of Power Internet of Things based on Cooperative Edge Computing
Edge computing can be widely used in unmanned aerial vehicle (UAV) inspection, field operation control, power consumption information collection and other businesses in the power Internet of Things scene. Edge computing offloads functions such as data processing and applications to network edge node...
Saved in:
Published in: | IEEE access 2020-01, Vol.8, p.1-1 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-44d23a8c165113d4cf3a0c6be7376f1600819c9990cc41e3f9ef3dfd104559613 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-44d23a8c165113d4cf3a0c6be7376f1600819c9990cc41e3f9ef3dfd104559613 |
container_end_page | 1 |
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 8 |
creator | Wang, Qianjun Shao, Sujie Guo, Shaoyong Qiu, Xuesong Wang, Zhili |
description | Edge computing can be widely used in unmanned aerial vehicle (UAV) inspection, field operation control, power consumption information collection and other businesses in the power Internet of Things scene. Edge computing offloads functions such as data processing and applications to network edge nodes near the terminals to provide low-latency services and ensure service quality. However, with the explosive growth of business terminals, the capacity of single edge node is limited and it is difficult to meet all business requirements at the same time. Therefore, this paper proposes a task allocation mechanism based on cooperative edge computing. Firstly, a task allocation model based on cooperation of two edge nodes is established to minimize the average task completion delay while meeting business requirements. Secondly, the Two-edge-node Cooperative-task Allocation based on Improved Particle Swarm Optimization (TCA-IPSO) algorithm is proposed, which applies the crossover and mutation strategy in genetic algorithm to improve the particle swarm optimization algorithm, and solves the problem that the task allocation scheme in cooperation is prone to fall into a local optimum. Finally the simulation results show that the proposed TCA-IPSO algorithm reduces the average task completion delay by 53.8% and 36.0% compared to the benchmark and QoS-based Task Distribution (QBTD) algorithm. |
doi_str_mv | 10.1109/ACCESS.2020.3020233 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2454677881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9181621</ieee_id><doaj_id>oai_doaj_org_article_ca33fc9b153849de9b45b4f9fdf088f3</doaj_id><sourcerecordid>2454677881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-44d23a8c165113d4cf3a0c6be7376f1600819c9990cc41e3f9ef3dfd104559613</originalsourceid><addsrcrecordid>eNpNkV9LwzAUxYsoOHSfYC8FnzeT3vRPHkeZOpgobD74FNLkZuvcmpl0it_e1I5hHpJwOOfcC78oGlEyoZTw-2lZzpbLSUISMoFwJQAX0SChGR9DCtnlv_91NPR-S8IpgpTmg-h9Jf1HPN3trJJtbZv4GdVGNrXfx9bEr_YbXTxvWnQNtp2y2tTN2seV9KjjYC-tPaAL0S-MZ3qNQdgfjm0w3UZXRu48Dk_vTfT2MFuVT-PFy-O8nC7GipGiHTOmE5CFollKKWimDEiisgpzyDNDs25VrjjnRClGEQxHA9poSlia8ozCTTTve7WVW3Fw9V66H2FlLf4E69ZCurZWOxRKAhjFK5pCwbhGXrG0YoYbbUhRGAhdd33XwdnPI_pWbO3RNWF9kbCUZXleFN1E6F3KWe8dmvNUSkSHRPRIRIdEnJCE1KhP1Yh4TnAaSCQUfgHEwYZq</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454677881</pqid></control><display><type>article</type><title>Task Allocation Mechanism of Power Internet of Things based on Cooperative Edge Computing</title><source>IEEE Xplore Open Access Journals</source><creator>Wang, Qianjun ; Shao, Sujie ; Guo, Shaoyong ; Qiu, Xuesong ; Wang, Zhili</creator><creatorcontrib>Wang, Qianjun ; Shao, Sujie ; Guo, Shaoyong ; Qiu, Xuesong ; Wang, Zhili</creatorcontrib><description>Edge computing can be widely used in unmanned aerial vehicle (UAV) inspection, field operation control, power consumption information collection and other businesses in the power Internet of Things scene. Edge computing offloads functions such as data processing and applications to network edge nodes near the terminals to provide low-latency services and ensure service quality. However, with the explosive growth of business terminals, the capacity of single edge node is limited and it is difficult to meet all business requirements at the same time. Therefore, this paper proposes a task allocation mechanism based on cooperative edge computing. Firstly, a task allocation model based on cooperation of two edge nodes is established to minimize the average task completion delay while meeting business requirements. Secondly, the Two-edge-node Cooperative-task Allocation based on Improved Particle Swarm Optimization (TCA-IPSO) algorithm is proposed, which applies the crossover and mutation strategy in genetic algorithm to improve the particle swarm optimization algorithm, and solves the problem that the task allocation scheme in cooperation is prone to fall into a local optimum. Finally the simulation results show that the proposed TCA-IPSO algorithm reduces the average task completion delay by 53.8% and 36.0% compared to the benchmark and QoS-based Task Distribution (QBTD) algorithm.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3020233</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Business ; Computational modeling ; Cooperation ; Cooperative edge computing ; Crossovers ; Data processing ; Delays ; Edge computing ; Genetic algorithms ; Inspection ; Internet of Things ; Network latency ; Nodes ; Particle swarm optimization ; Power consumption ; Power Internet of Things ; Resource management ; Task allocation ; Task analysis ; Task completion delay ; Terminals ; Unmanned aerial vehicles</subject><ispartof>IEEE access, 2020-01, Vol.8, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-44d23a8c165113d4cf3a0c6be7376f1600819c9990cc41e3f9ef3dfd104559613</citedby><cites>FETCH-LOGICAL-c408t-44d23a8c165113d4cf3a0c6be7376f1600819c9990cc41e3f9ef3dfd104559613</cites><orcidid>0000-0003-2033-8431 ; 0000-0003-3945-0706 ; 0000-0002-7899-539X ; 0000-0002-5810-561X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9181621$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,27614,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Wang, Qianjun</creatorcontrib><creatorcontrib>Shao, Sujie</creatorcontrib><creatorcontrib>Guo, Shaoyong</creatorcontrib><creatorcontrib>Qiu, Xuesong</creatorcontrib><creatorcontrib>Wang, Zhili</creatorcontrib><title>Task Allocation Mechanism of Power Internet of Things based on Cooperative Edge Computing</title><title>IEEE access</title><addtitle>Access</addtitle><description>Edge computing can be widely used in unmanned aerial vehicle (UAV) inspection, field operation control, power consumption information collection and other businesses in the power Internet of Things scene. Edge computing offloads functions such as data processing and applications to network edge nodes near the terminals to provide low-latency services and ensure service quality. However, with the explosive growth of business terminals, the capacity of single edge node is limited and it is difficult to meet all business requirements at the same time. Therefore, this paper proposes a task allocation mechanism based on cooperative edge computing. Firstly, a task allocation model based on cooperation of two edge nodes is established to minimize the average task completion delay while meeting business requirements. Secondly, the Two-edge-node Cooperative-task Allocation based on Improved Particle Swarm Optimization (TCA-IPSO) algorithm is proposed, which applies the crossover and mutation strategy in genetic algorithm to improve the particle swarm optimization algorithm, and solves the problem that the task allocation scheme in cooperation is prone to fall into a local optimum. Finally the simulation results show that the proposed TCA-IPSO algorithm reduces the average task completion delay by 53.8% and 36.0% compared to the benchmark and QoS-based Task Distribution (QBTD) algorithm.</description><subject>Algorithms</subject><subject>Business</subject><subject>Computational modeling</subject><subject>Cooperation</subject><subject>Cooperative edge computing</subject><subject>Crossovers</subject><subject>Data processing</subject><subject>Delays</subject><subject>Edge computing</subject><subject>Genetic algorithms</subject><subject>Inspection</subject><subject>Internet of Things</subject><subject>Network latency</subject><subject>Nodes</subject><subject>Particle swarm optimization</subject><subject>Power consumption</subject><subject>Power Internet of Things</subject><subject>Resource management</subject><subject>Task allocation</subject><subject>Task analysis</subject><subject>Task completion delay</subject><subject>Terminals</subject><subject>Unmanned aerial vehicles</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkV9LwzAUxYsoOHSfYC8FnzeT3vRPHkeZOpgobD74FNLkZuvcmpl0it_e1I5hHpJwOOfcC78oGlEyoZTw-2lZzpbLSUISMoFwJQAX0SChGR9DCtnlv_91NPR-S8IpgpTmg-h9Jf1HPN3trJJtbZv4GdVGNrXfx9bEr_YbXTxvWnQNtp2y2tTN2seV9KjjYC-tPaAL0S-MZ3qNQdgfjm0w3UZXRu48Dk_vTfT2MFuVT-PFy-O8nC7GipGiHTOmE5CFollKKWimDEiisgpzyDNDs25VrjjnRClGEQxHA9poSlia8ozCTTTve7WVW3Fw9V66H2FlLf4E69ZCurZWOxRKAhjFK5pCwbhGXrG0YoYbbUhRGAhdd33XwdnPI_pWbO3RNWF9kbCUZXleFN1E6F3KWe8dmvNUSkSHRPRIRIdEnJCE1KhP1Yh4TnAaSCQUfgHEwYZq</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Wang, Qianjun</creator><creator>Shao, Sujie</creator><creator>Guo, Shaoyong</creator><creator>Qiu, Xuesong</creator><creator>Wang, Zhili</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2033-8431</orcidid><orcidid>https://orcid.org/0000-0003-3945-0706</orcidid><orcidid>https://orcid.org/0000-0002-7899-539X</orcidid><orcidid>https://orcid.org/0000-0002-5810-561X</orcidid></search><sort><creationdate>20200101</creationdate><title>Task Allocation Mechanism of Power Internet of Things based on Cooperative Edge Computing</title><author>Wang, Qianjun ; Shao, Sujie ; Guo, Shaoyong ; Qiu, Xuesong ; Wang, Zhili</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-44d23a8c165113d4cf3a0c6be7376f1600819c9990cc41e3f9ef3dfd104559613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Business</topic><topic>Computational modeling</topic><topic>Cooperation</topic><topic>Cooperative edge computing</topic><topic>Crossovers</topic><topic>Data processing</topic><topic>Delays</topic><topic>Edge computing</topic><topic>Genetic algorithms</topic><topic>Inspection</topic><topic>Internet of Things</topic><topic>Network latency</topic><topic>Nodes</topic><topic>Particle swarm optimization</topic><topic>Power consumption</topic><topic>Power Internet of Things</topic><topic>Resource management</topic><topic>Task allocation</topic><topic>Task analysis</topic><topic>Task completion delay</topic><topic>Terminals</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Qianjun</creatorcontrib><creatorcontrib>Shao, Sujie</creatorcontrib><creatorcontrib>Guo, Shaoyong</creatorcontrib><creatorcontrib>Qiu, Xuesong</creatorcontrib><creatorcontrib>Wang, Zhili</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Qianjun</au><au>Shao, Sujie</au><au>Guo, Shaoyong</au><au>Qiu, Xuesong</au><au>Wang, Zhili</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Task Allocation Mechanism of Power Internet of Things based on Cooperative Edge Computing</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Edge computing can be widely used in unmanned aerial vehicle (UAV) inspection, field operation control, power consumption information collection and other businesses in the power Internet of Things scene. Edge computing offloads functions such as data processing and applications to network edge nodes near the terminals to provide low-latency services and ensure service quality. However, with the explosive growth of business terminals, the capacity of single edge node is limited and it is difficult to meet all business requirements at the same time. Therefore, this paper proposes a task allocation mechanism based on cooperative edge computing. Firstly, a task allocation model based on cooperation of two edge nodes is established to minimize the average task completion delay while meeting business requirements. Secondly, the Two-edge-node Cooperative-task Allocation based on Improved Particle Swarm Optimization (TCA-IPSO) algorithm is proposed, which applies the crossover and mutation strategy in genetic algorithm to improve the particle swarm optimization algorithm, and solves the problem that the task allocation scheme in cooperation is prone to fall into a local optimum. Finally the simulation results show that the proposed TCA-IPSO algorithm reduces the average task completion delay by 53.8% and 36.0% compared to the benchmark and QoS-based Task Distribution (QBTD) algorithm.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3020233</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2033-8431</orcidid><orcidid>https://orcid.org/0000-0003-3945-0706</orcidid><orcidid>https://orcid.org/0000-0002-7899-539X</orcidid><orcidid>https://orcid.org/0000-0002-5810-561X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020-01, Vol.8, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2454677881 |
source | IEEE Xplore Open Access Journals |
subjects | Algorithms Business Computational modeling Cooperation Cooperative edge computing Crossovers Data processing Delays Edge computing Genetic algorithms Inspection Internet of Things Network latency Nodes Particle swarm optimization Power consumption Power Internet of Things Resource management Task allocation Task analysis Task completion delay Terminals Unmanned aerial vehicles |
title | Task Allocation Mechanism of Power Internet of Things based on Cooperative Edge Computing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A53%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Task%20Allocation%20Mechanism%20of%20Power%20Internet%20of%20Things%20based%20on%20Cooperative%20Edge%20Computing&rft.jtitle=IEEE%20access&rft.au=Wang,%20Qianjun&rft.date=2020-01-01&rft.volume=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3020233&rft_dat=%3Cproquest_ieee_%3E2454677881%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-44d23a8c165113d4cf3a0c6be7376f1600819c9990cc41e3f9ef3dfd104559613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2454677881&rft_id=info:pmid/&rft_ieee_id=9181621&rfr_iscdi=true |