Loading…
Diagonal Denoising for Conventional Beamforming via Sparsity Optimization
Conventional beamforming (CBF) is widely used in underwater acoustic applications due to its simplicity and robustness. Under certain circumstances, incoherent noise is the main disturbance for hydrophone arrays and can lead to a serious decline in the signal power estimation accuracy and signal det...
Saved in:
Published in: | IEEE access 2020, Vol.8, p.11416-11425 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-23287daf8edfd2d606cca459dce3eea1efcc5bc31d7ee33ada52c61456aad7963 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-23287daf8edfd2d606cca459dce3eea1efcc5bc31d7ee33ada52c61456aad7963 |
container_end_page | 11425 |
container_issue | |
container_start_page | 11416 |
container_title | IEEE access |
container_volume | 8 |
creator | Jiang, Guangyu Sun, Chao Liu, Xionghou |
description | Conventional beamforming (CBF) is widely used in underwater acoustic applications due to its simplicity and robustness. Under certain circumstances, incoherent noise is the main disturbance for hydrophone arrays and can lead to a serious decline in the signal power estimation accuracy and signal detection ability of CBF. Since incoherent noise contamination is concentrated along the diagonal of the covariance matrix, we propose to improve the performance of CBF by reducing the diagonal as much as possible to suppress the incoherent noise until the output spatial spectrum becomes sparsest. Mathematically, the denoising problem is convex; hence, it can be solved with guaranteed efficiency and convergence properties. The proposed denoising algorithm is named the sparsity-optimization-based diagonal denoising (SO-DD) algorithm, and its capability is investigated and compared with the recently developed positive-semidefinite-constrained diagonal denoising (PSC-DD) algorithmvia simulation and experiments. The results suggest that both SO-DD and PSC-DD work well under ideal conditions where noise is perfectly incoherent, while SO-DD performs more reliably when noise is partially coherent due to limited sampling and the existence of coherent noise component in practice. |
doi_str_mv | 10.1109/ACCESS.2020.2964296 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2454722637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8950448</ieee_id><doaj_id>oai_doaj_org_article_c0199f02f8c04ede8edb8d781c830080</doaj_id><sourcerecordid>2454722637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-23287daf8edfd2d606cca459dce3eea1efcc5bc31d7ee33ada52c61456aad7963</originalsourceid><addsrcrecordid>eNpNUV1LwzAULaLgUH_BXgo-b-arafqodepA8GH6HO6S25GxNjPphPnrTVcRA5eEc885l9yTZVNK5pSS6u6-rher1ZwRRuaskiLVWTZhVFYzXnB5_u99md3EuCXpqAQV5SRbPjrY-A52-SN23kXXbfLGh7z23Rd2vTu1HhDaBLZD88tBvtpDiK4_5m_73rXuGwbedXbRwC7ize99lX08Ld7rl9nr2_Oyvn-dGUFUP2OcqdJCo9A2lllJpDEgisoa5IhAsTGmWBtObYnIOVgomJFUFBLAlpXkV9ly9LUetnofXAvhqD04fQJ82GgIvTM71IbQqmoIa5QhAi2mmWtlS0WN4mkFJHndjl774D8PGHu99YeQvhw1E4UoGZO8TCw-skzwMQZs_qZSoocI9BiBHiLQvxEk1XRUOUT8U6iqIEIo_gN5joOV</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454722637</pqid></control><display><type>article</type><title>Diagonal Denoising for Conventional Beamforming via Sparsity Optimization</title><source>IEEE Xplore Open Access Journals</source><creator>Jiang, Guangyu ; Sun, Chao ; Liu, Xionghou</creator><creatorcontrib>Jiang, Guangyu ; Sun, Chao ; Liu, Xionghou</creatorcontrib><description>Conventional beamforming (CBF) is widely used in underwater acoustic applications due to its simplicity and robustness. Under certain circumstances, incoherent noise is the main disturbance for hydrophone arrays and can lead to a serious decline in the signal power estimation accuracy and signal detection ability of CBF. Since incoherent noise contamination is concentrated along the diagonal of the covariance matrix, we propose to improve the performance of CBF by reducing the diagonal as much as possible to suppress the incoherent noise until the output spatial spectrum becomes sparsest. Mathematically, the denoising problem is convex; hence, it can be solved with guaranteed efficiency and convergence properties. The proposed denoising algorithm is named the sparsity-optimization-based diagonal denoising (SO-DD) algorithm, and its capability is investigated and compared with the recently developed positive-semidefinite-constrained diagonal denoising (PSC-DD) algorithmvia simulation and experiments. The results suggest that both SO-DD and PSC-DD work well under ideal conditions where noise is perfectly incoherent, while SO-DD performs more reliably when noise is partially coherent due to limited sampling and the existence of coherent noise component in practice.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2964296</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Acoustic noise ; Algorithms ; Array signal processing ; Beamforming ; Contamination ; conventional beamforming ; Convergence ; Covariance matrices ; Covariance matrix ; diagonal denoising ; Hydrophones ; Incoherent noise ; Mathematical analysis ; Matrix methods ; Noise ; Noise reduction ; Optimization ; Robustness (mathematics) ; Signal detection ; Signal to noise ratio ; Sparsity ; sparsity optimization ; Underwater acoustics</subject><ispartof>IEEE access, 2020, Vol.8, p.11416-11425</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-23287daf8edfd2d606cca459dce3eea1efcc5bc31d7ee33ada52c61456aad7963</citedby><cites>FETCH-LOGICAL-c408t-23287daf8edfd2d606cca459dce3eea1efcc5bc31d7ee33ada52c61456aad7963</cites><orcidid>0000-0002-2254-715X ; 0000-0001-6736-6873 ; 0000-0003-4404-9183</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8950448$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Jiang, Guangyu</creatorcontrib><creatorcontrib>Sun, Chao</creatorcontrib><creatorcontrib>Liu, Xionghou</creatorcontrib><title>Diagonal Denoising for Conventional Beamforming via Sparsity Optimization</title><title>IEEE access</title><addtitle>Access</addtitle><description>Conventional beamforming (CBF) is widely used in underwater acoustic applications due to its simplicity and robustness. Under certain circumstances, incoherent noise is the main disturbance for hydrophone arrays and can lead to a serious decline in the signal power estimation accuracy and signal detection ability of CBF. Since incoherent noise contamination is concentrated along the diagonal of the covariance matrix, we propose to improve the performance of CBF by reducing the diagonal as much as possible to suppress the incoherent noise until the output spatial spectrum becomes sparsest. Mathematically, the denoising problem is convex; hence, it can be solved with guaranteed efficiency and convergence properties. The proposed denoising algorithm is named the sparsity-optimization-based diagonal denoising (SO-DD) algorithm, and its capability is investigated and compared with the recently developed positive-semidefinite-constrained diagonal denoising (PSC-DD) algorithmvia simulation and experiments. The results suggest that both SO-DD and PSC-DD work well under ideal conditions where noise is perfectly incoherent, while SO-DD performs more reliably when noise is partially coherent due to limited sampling and the existence of coherent noise component in practice.</description><subject>Acoustic noise</subject><subject>Algorithms</subject><subject>Array signal processing</subject><subject>Beamforming</subject><subject>Contamination</subject><subject>conventional beamforming</subject><subject>Convergence</subject><subject>Covariance matrices</subject><subject>Covariance matrix</subject><subject>diagonal denoising</subject><subject>Hydrophones</subject><subject>Incoherent noise</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Noise</subject><subject>Noise reduction</subject><subject>Optimization</subject><subject>Robustness (mathematics)</subject><subject>Signal detection</subject><subject>Signal to noise ratio</subject><subject>Sparsity</subject><subject>sparsity optimization</subject><subject>Underwater acoustics</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1LwzAULaLgUH_BXgo-b-arafqodepA8GH6HO6S25GxNjPphPnrTVcRA5eEc885l9yTZVNK5pSS6u6-rher1ZwRRuaskiLVWTZhVFYzXnB5_u99md3EuCXpqAQV5SRbPjrY-A52-SN23kXXbfLGh7z23Rd2vTu1HhDaBLZD88tBvtpDiK4_5m_73rXuGwbedXbRwC7ize99lX08Ld7rl9nr2_Oyvn-dGUFUP2OcqdJCo9A2lllJpDEgisoa5IhAsTGmWBtObYnIOVgomJFUFBLAlpXkV9ly9LUetnofXAvhqD04fQJ82GgIvTM71IbQqmoIa5QhAi2mmWtlS0WN4mkFJHndjl774D8PGHu99YeQvhw1E4UoGZO8TCw-skzwMQZs_qZSoocI9BiBHiLQvxEk1XRUOUT8U6iqIEIo_gN5joOV</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Jiang, Guangyu</creator><creator>Sun, Chao</creator><creator>Liu, Xionghou</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2254-715X</orcidid><orcidid>https://orcid.org/0000-0001-6736-6873</orcidid><orcidid>https://orcid.org/0000-0003-4404-9183</orcidid></search><sort><creationdate>2020</creationdate><title>Diagonal Denoising for Conventional Beamforming via Sparsity Optimization</title><author>Jiang, Guangyu ; Sun, Chao ; Liu, Xionghou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-23287daf8edfd2d606cca459dce3eea1efcc5bc31d7ee33ada52c61456aad7963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acoustic noise</topic><topic>Algorithms</topic><topic>Array signal processing</topic><topic>Beamforming</topic><topic>Contamination</topic><topic>conventional beamforming</topic><topic>Convergence</topic><topic>Covariance matrices</topic><topic>Covariance matrix</topic><topic>diagonal denoising</topic><topic>Hydrophones</topic><topic>Incoherent noise</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Noise</topic><topic>Noise reduction</topic><topic>Optimization</topic><topic>Robustness (mathematics)</topic><topic>Signal detection</topic><topic>Signal to noise ratio</topic><topic>Sparsity</topic><topic>sparsity optimization</topic><topic>Underwater acoustics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Guangyu</creatorcontrib><creatorcontrib>Sun, Chao</creatorcontrib><creatorcontrib>Liu, Xionghou</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Guangyu</au><au>Sun, Chao</au><au>Liu, Xionghou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diagonal Denoising for Conventional Beamforming via Sparsity Optimization</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>11416</spage><epage>11425</epage><pages>11416-11425</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Conventional beamforming (CBF) is widely used in underwater acoustic applications due to its simplicity and robustness. Under certain circumstances, incoherent noise is the main disturbance for hydrophone arrays and can lead to a serious decline in the signal power estimation accuracy and signal detection ability of CBF. Since incoherent noise contamination is concentrated along the diagonal of the covariance matrix, we propose to improve the performance of CBF by reducing the diagonal as much as possible to suppress the incoherent noise until the output spatial spectrum becomes sparsest. Mathematically, the denoising problem is convex; hence, it can be solved with guaranteed efficiency and convergence properties. The proposed denoising algorithm is named the sparsity-optimization-based diagonal denoising (SO-DD) algorithm, and its capability is investigated and compared with the recently developed positive-semidefinite-constrained diagonal denoising (PSC-DD) algorithmvia simulation and experiments. The results suggest that both SO-DD and PSC-DD work well under ideal conditions where noise is perfectly incoherent, while SO-DD performs more reliably when noise is partially coherent due to limited sampling and the existence of coherent noise component in practice.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2964296</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2254-715X</orcidid><orcidid>https://orcid.org/0000-0001-6736-6873</orcidid><orcidid>https://orcid.org/0000-0003-4404-9183</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.11416-11425 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2454722637 |
source | IEEE Xplore Open Access Journals |
subjects | Acoustic noise Algorithms Array signal processing Beamforming Contamination conventional beamforming Convergence Covariance matrices Covariance matrix diagonal denoising Hydrophones Incoherent noise Mathematical analysis Matrix methods Noise Noise reduction Optimization Robustness (mathematics) Signal detection Signal to noise ratio Sparsity sparsity optimization Underwater acoustics |
title | Diagonal Denoising for Conventional Beamforming via Sparsity Optimization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A17%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diagonal%20Denoising%20for%20Conventional%20Beamforming%20via%20Sparsity%20Optimization&rft.jtitle=IEEE%20access&rft.au=Jiang,%20Guangyu&rft.date=2020&rft.volume=8&rft.spage=11416&rft.epage=11425&rft.pages=11416-11425&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2964296&rft_dat=%3Cproquest_cross%3E2454722637%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-23287daf8edfd2d606cca459dce3eea1efcc5bc31d7ee33ada52c61456aad7963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2454722637&rft_id=info:pmid/&rft_ieee_id=8950448&rfr_iscdi=true |