Loading…

Diagonal Denoising for Conventional Beamforming via Sparsity Optimization

Conventional beamforming (CBF) is widely used in underwater acoustic applications due to its simplicity and robustness. Under certain circumstances, incoherent noise is the main disturbance for hydrophone arrays and can lead to a serious decline in the signal power estimation accuracy and signal det...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2020, Vol.8, p.11416-11425
Main Authors: Jiang, Guangyu, Sun, Chao, Liu, Xionghou
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-23287daf8edfd2d606cca459dce3eea1efcc5bc31d7ee33ada52c61456aad7963
cites cdi_FETCH-LOGICAL-c408t-23287daf8edfd2d606cca459dce3eea1efcc5bc31d7ee33ada52c61456aad7963
container_end_page 11425
container_issue
container_start_page 11416
container_title IEEE access
container_volume 8
creator Jiang, Guangyu
Sun, Chao
Liu, Xionghou
description Conventional beamforming (CBF) is widely used in underwater acoustic applications due to its simplicity and robustness. Under certain circumstances, incoherent noise is the main disturbance for hydrophone arrays and can lead to a serious decline in the signal power estimation accuracy and signal detection ability of CBF. Since incoherent noise contamination is concentrated along the diagonal of the covariance matrix, we propose to improve the performance of CBF by reducing the diagonal as much as possible to suppress the incoherent noise until the output spatial spectrum becomes sparsest. Mathematically, the denoising problem is convex; hence, it can be solved with guaranteed efficiency and convergence properties. The proposed denoising algorithm is named the sparsity-optimization-based diagonal denoising (SO-DD) algorithm, and its capability is investigated and compared with the recently developed positive-semidefinite-constrained diagonal denoising (PSC-DD) algorithmvia simulation and experiments. The results suggest that both SO-DD and PSC-DD work well under ideal conditions where noise is perfectly incoherent, while SO-DD performs more reliably when noise is partially coherent due to limited sampling and the existence of coherent noise component in practice.
doi_str_mv 10.1109/ACCESS.2020.2964296
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2454722637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8950448</ieee_id><doaj_id>oai_doaj_org_article_c0199f02f8c04ede8edb8d781c830080</doaj_id><sourcerecordid>2454722637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-23287daf8edfd2d606cca459dce3eea1efcc5bc31d7ee33ada52c61456aad7963</originalsourceid><addsrcrecordid>eNpNUV1LwzAULaLgUH_BXgo-b-arafqodepA8GH6HO6S25GxNjPphPnrTVcRA5eEc885l9yTZVNK5pSS6u6-rher1ZwRRuaskiLVWTZhVFYzXnB5_u99md3EuCXpqAQV5SRbPjrY-A52-SN23kXXbfLGh7z23Rd2vTu1HhDaBLZD88tBvtpDiK4_5m_73rXuGwbedXbRwC7ize99lX08Ld7rl9nr2_Oyvn-dGUFUP2OcqdJCo9A2lllJpDEgisoa5IhAsTGmWBtObYnIOVgomJFUFBLAlpXkV9ly9LUetnofXAvhqD04fQJ82GgIvTM71IbQqmoIa5QhAi2mmWtlS0WN4mkFJHndjl774D8PGHu99YeQvhw1E4UoGZO8TCw-skzwMQZs_qZSoocI9BiBHiLQvxEk1XRUOUT8U6iqIEIo_gN5joOV</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454722637</pqid></control><display><type>article</type><title>Diagonal Denoising for Conventional Beamforming via Sparsity Optimization</title><source>IEEE Xplore Open Access Journals</source><creator>Jiang, Guangyu ; Sun, Chao ; Liu, Xionghou</creator><creatorcontrib>Jiang, Guangyu ; Sun, Chao ; Liu, Xionghou</creatorcontrib><description>Conventional beamforming (CBF) is widely used in underwater acoustic applications due to its simplicity and robustness. Under certain circumstances, incoherent noise is the main disturbance for hydrophone arrays and can lead to a serious decline in the signal power estimation accuracy and signal detection ability of CBF. Since incoherent noise contamination is concentrated along the diagonal of the covariance matrix, we propose to improve the performance of CBF by reducing the diagonal as much as possible to suppress the incoherent noise until the output spatial spectrum becomes sparsest. Mathematically, the denoising problem is convex; hence, it can be solved with guaranteed efficiency and convergence properties. The proposed denoising algorithm is named the sparsity-optimization-based diagonal denoising (SO-DD) algorithm, and its capability is investigated and compared with the recently developed positive-semidefinite-constrained diagonal denoising (PSC-DD) algorithmvia simulation and experiments. The results suggest that both SO-DD and PSC-DD work well under ideal conditions where noise is perfectly incoherent, while SO-DD performs more reliably when noise is partially coherent due to limited sampling and the existence of coherent noise component in practice.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2964296</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Acoustic noise ; Algorithms ; Array signal processing ; Beamforming ; Contamination ; conventional beamforming ; Convergence ; Covariance matrices ; Covariance matrix ; diagonal denoising ; Hydrophones ; Incoherent noise ; Mathematical analysis ; Matrix methods ; Noise ; Noise reduction ; Optimization ; Robustness (mathematics) ; Signal detection ; Signal to noise ratio ; Sparsity ; sparsity optimization ; Underwater acoustics</subject><ispartof>IEEE access, 2020, Vol.8, p.11416-11425</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-23287daf8edfd2d606cca459dce3eea1efcc5bc31d7ee33ada52c61456aad7963</citedby><cites>FETCH-LOGICAL-c408t-23287daf8edfd2d606cca459dce3eea1efcc5bc31d7ee33ada52c61456aad7963</cites><orcidid>0000-0002-2254-715X ; 0000-0001-6736-6873 ; 0000-0003-4404-9183</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8950448$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Jiang, Guangyu</creatorcontrib><creatorcontrib>Sun, Chao</creatorcontrib><creatorcontrib>Liu, Xionghou</creatorcontrib><title>Diagonal Denoising for Conventional Beamforming via Sparsity Optimization</title><title>IEEE access</title><addtitle>Access</addtitle><description>Conventional beamforming (CBF) is widely used in underwater acoustic applications due to its simplicity and robustness. Under certain circumstances, incoherent noise is the main disturbance for hydrophone arrays and can lead to a serious decline in the signal power estimation accuracy and signal detection ability of CBF. Since incoherent noise contamination is concentrated along the diagonal of the covariance matrix, we propose to improve the performance of CBF by reducing the diagonal as much as possible to suppress the incoherent noise until the output spatial spectrum becomes sparsest. Mathematically, the denoising problem is convex; hence, it can be solved with guaranteed efficiency and convergence properties. The proposed denoising algorithm is named the sparsity-optimization-based diagonal denoising (SO-DD) algorithm, and its capability is investigated and compared with the recently developed positive-semidefinite-constrained diagonal denoising (PSC-DD) algorithmvia simulation and experiments. The results suggest that both SO-DD and PSC-DD work well under ideal conditions where noise is perfectly incoherent, while SO-DD performs more reliably when noise is partially coherent due to limited sampling and the existence of coherent noise component in practice.</description><subject>Acoustic noise</subject><subject>Algorithms</subject><subject>Array signal processing</subject><subject>Beamforming</subject><subject>Contamination</subject><subject>conventional beamforming</subject><subject>Convergence</subject><subject>Covariance matrices</subject><subject>Covariance matrix</subject><subject>diagonal denoising</subject><subject>Hydrophones</subject><subject>Incoherent noise</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Noise</subject><subject>Noise reduction</subject><subject>Optimization</subject><subject>Robustness (mathematics)</subject><subject>Signal detection</subject><subject>Signal to noise ratio</subject><subject>Sparsity</subject><subject>sparsity optimization</subject><subject>Underwater acoustics</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1LwzAULaLgUH_BXgo-b-arafqodepA8GH6HO6S25GxNjPphPnrTVcRA5eEc885l9yTZVNK5pSS6u6-rher1ZwRRuaskiLVWTZhVFYzXnB5_u99md3EuCXpqAQV5SRbPjrY-A52-SN23kXXbfLGh7z23Rd2vTu1HhDaBLZD88tBvtpDiK4_5m_73rXuGwbedXbRwC7ize99lX08Ld7rl9nr2_Oyvn-dGUFUP2OcqdJCo9A2lllJpDEgisoa5IhAsTGmWBtObYnIOVgomJFUFBLAlpXkV9ly9LUetnofXAvhqD04fQJ82GgIvTM71IbQqmoIa5QhAi2mmWtlS0WN4mkFJHndjl774D8PGHu99YeQvhw1E4UoGZO8TCw-skzwMQZs_qZSoocI9BiBHiLQvxEk1XRUOUT8U6iqIEIo_gN5joOV</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Jiang, Guangyu</creator><creator>Sun, Chao</creator><creator>Liu, Xionghou</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2254-715X</orcidid><orcidid>https://orcid.org/0000-0001-6736-6873</orcidid><orcidid>https://orcid.org/0000-0003-4404-9183</orcidid></search><sort><creationdate>2020</creationdate><title>Diagonal Denoising for Conventional Beamforming via Sparsity Optimization</title><author>Jiang, Guangyu ; Sun, Chao ; Liu, Xionghou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-23287daf8edfd2d606cca459dce3eea1efcc5bc31d7ee33ada52c61456aad7963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acoustic noise</topic><topic>Algorithms</topic><topic>Array signal processing</topic><topic>Beamforming</topic><topic>Contamination</topic><topic>conventional beamforming</topic><topic>Convergence</topic><topic>Covariance matrices</topic><topic>Covariance matrix</topic><topic>diagonal denoising</topic><topic>Hydrophones</topic><topic>Incoherent noise</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Noise</topic><topic>Noise reduction</topic><topic>Optimization</topic><topic>Robustness (mathematics)</topic><topic>Signal detection</topic><topic>Signal to noise ratio</topic><topic>Sparsity</topic><topic>sparsity optimization</topic><topic>Underwater acoustics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Guangyu</creatorcontrib><creatorcontrib>Sun, Chao</creatorcontrib><creatorcontrib>Liu, Xionghou</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Guangyu</au><au>Sun, Chao</au><au>Liu, Xionghou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diagonal Denoising for Conventional Beamforming via Sparsity Optimization</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>11416</spage><epage>11425</epage><pages>11416-11425</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Conventional beamforming (CBF) is widely used in underwater acoustic applications due to its simplicity and robustness. Under certain circumstances, incoherent noise is the main disturbance for hydrophone arrays and can lead to a serious decline in the signal power estimation accuracy and signal detection ability of CBF. Since incoherent noise contamination is concentrated along the diagonal of the covariance matrix, we propose to improve the performance of CBF by reducing the diagonal as much as possible to suppress the incoherent noise until the output spatial spectrum becomes sparsest. Mathematically, the denoising problem is convex; hence, it can be solved with guaranteed efficiency and convergence properties. The proposed denoising algorithm is named the sparsity-optimization-based diagonal denoising (SO-DD) algorithm, and its capability is investigated and compared with the recently developed positive-semidefinite-constrained diagonal denoising (PSC-DD) algorithmvia simulation and experiments. The results suggest that both SO-DD and PSC-DD work well under ideal conditions where noise is perfectly incoherent, while SO-DD performs more reliably when noise is partially coherent due to limited sampling and the existence of coherent noise component in practice.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2964296</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2254-715X</orcidid><orcidid>https://orcid.org/0000-0001-6736-6873</orcidid><orcidid>https://orcid.org/0000-0003-4404-9183</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.11416-11425
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2454722637
source IEEE Xplore Open Access Journals
subjects Acoustic noise
Algorithms
Array signal processing
Beamforming
Contamination
conventional beamforming
Convergence
Covariance matrices
Covariance matrix
diagonal denoising
Hydrophones
Incoherent noise
Mathematical analysis
Matrix methods
Noise
Noise reduction
Optimization
Robustness (mathematics)
Signal detection
Signal to noise ratio
Sparsity
sparsity optimization
Underwater acoustics
title Diagonal Denoising for Conventional Beamforming via Sparsity Optimization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A17%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diagonal%20Denoising%20for%20Conventional%20Beamforming%20via%20Sparsity%20Optimization&rft.jtitle=IEEE%20access&rft.au=Jiang,%20Guangyu&rft.date=2020&rft.volume=8&rft.spage=11416&rft.epage=11425&rft.pages=11416-11425&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2964296&rft_dat=%3Cproquest_cross%3E2454722637%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-23287daf8edfd2d606cca459dce3eea1efcc5bc31d7ee33ada52c61456aad7963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2454722637&rft_id=info:pmid/&rft_ieee_id=8950448&rfr_iscdi=true