Loading…
A New High Capacity Image Steganography Method Combined With Image Elliptic Curve Cryptography and Deep Neural Network
Image steganography is a technology that hides sensitive information into an image. The traditional image steganography method tends to securely embed secret information in the host image so that the payload capacity is almost ignored and the steganographic image quality needs to be improved for the...
Saved in:
Published in: | IEEE access 2020, Vol.8, p.25777-25788 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-6a29ed144b1e6db53e18d65d9e78a54f5a8081975118503638528269ec56d78e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-6a29ed144b1e6db53e18d65d9e78a54f5a8081975118503638528269ec56d78e3 |
container_end_page | 25788 |
container_issue | |
container_start_page | 25777 |
container_title | IEEE access |
container_volume | 8 |
creator | Duan, Xintao Guo, Daidou Liu, Nao Li, Baoxia Gou, Mengxiao Qin, Chuan |
description | Image steganography is a technology that hides sensitive information into an image. The traditional image steganography method tends to securely embed secret information in the host image so that the payload capacity is almost ignored and the steganographic image quality needs to be improved for the Human Visual System(HVS). Therefore, in this work, we propose a new high capacity image steganography method based on deep learning. The Discrete Cosine Transform(DCT) is used to transform the secret image, and then the transformed image is encrypted by Elliptic Curve Cryptography(ECC) to improve the anti-detection property of the obtained image. To improve steganographic capacity, the SegNet Deep Neural Network with a set of Hiding and Extraction networks enables steganography and extraction of full-size images. The experimental results show that the method can effectively allocate each pixel in the image so that the relative capacity of steganography reaches 1. Besides, the image obtained using this steganography method has higher Peak Signal-to-Noise Ratio(PSNR) and Structural Similarity Index(SSIM) values, reaching 40dB and 0.96, respectively. |
doi_str_mv | 10.1109/ACCESS.2020.2971528 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2454732725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8981989</ieee_id><doaj_id>oai_doaj_org_article_57f40792e5f34904a67020ed3ef53b92</doaj_id><sourcerecordid>2454732725</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-6a29ed144b1e6db53e18d65d9e78a54f5a8081975118503638528269ec56d78e3</originalsourceid><addsrcrecordid>eNpNUctu2zAQFIIWaJDkC3IhkLNdvh9HQ3UbA0lzcIoeCVpcyXRlU6XoBP77MpUblJclFjOzOztVdUvwnBBsPi_qerlezymmeE6NIoLqi-qSEmlmTDD54b__p-pmHHe4PF1aQl1WLwv0HV7Rfei2qHaDa0I-odXedYDWGTp3iF1yw_aEHiFvo0d13G_CATz6GfL2DFz2fRhyaFB9TC-A6nQa8j-aO3j0BWAoU47J9aXk15h-XVcfW9ePcHOuV9WPr8vn-n728PRtVS8eZg3HOs-kowY84XxDQPqNYEC0l8IbUNoJ3gqnixOjBCFaYCaZLuapNNAI6ZUGdlWtJl0f3c4OKexdOtnogv3biKmzLpXVe7BCtRwrQ0G0jBvMnVTlouAZtIJtDC1ad5PWkOLvI4zZ7uIxHcr6lnLBFaOKioJiE6pJcRwTtO9TCbZvedkpL_uWlz3nVVi3EysAwDtDm2JOG_YHkACPUg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454732725</pqid></control><display><type>article</type><title>A New High Capacity Image Steganography Method Combined With Image Elliptic Curve Cryptography and Deep Neural Network</title><source>IEEE Open Access Journals</source><creator>Duan, Xintao ; Guo, Daidou ; Liu, Nao ; Li, Baoxia ; Gou, Mengxiao ; Qin, Chuan</creator><creatorcontrib>Duan, Xintao ; Guo, Daidou ; Liu, Nao ; Li, Baoxia ; Gou, Mengxiao ; Qin, Chuan</creatorcontrib><description>Image steganography is a technology that hides sensitive information into an image. The traditional image steganography method tends to securely embed secret information in the host image so that the payload capacity is almost ignored and the steganographic image quality needs to be improved for the Human Visual System(HVS). Therefore, in this work, we propose a new high capacity image steganography method based on deep learning. The Discrete Cosine Transform(DCT) is used to transform the secret image, and then the transformed image is encrypted by Elliptic Curve Cryptography(ECC) to improve the anti-detection property of the obtained image. To improve steganographic capacity, the SegNet Deep Neural Network with a set of Hiding and Extraction networks enables steganography and extraction of full-size images. The experimental results show that the method can effectively allocate each pixel in the image so that the relative capacity of steganography reaches 1. Besides, the image obtained using this steganography method has higher Peak Signal-to-Noise Ratio(PSNR) and Structural Similarity Index(SSIM) values, reaching 40dB and 0.96, respectively.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2971528</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Cryptography ; Curves ; DCT ; Decoding ; Deep learning ; deep neural network ; Discrete cosine transform ; Discrete cosine transforms ; ECC ; Elliptic curve cryptography ; Image quality ; Image steganography ; Machine learning ; Neural networks ; SegNet ; Signal to noise ratio ; Steganography</subject><ispartof>IEEE access, 2020, Vol.8, p.25777-25788</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-6a29ed144b1e6db53e18d65d9e78a54f5a8081975118503638528269ec56d78e3</citedby><cites>FETCH-LOGICAL-c408t-6a29ed144b1e6db53e18d65d9e78a54f5a8081975118503638528269ec56d78e3</cites><orcidid>0000-0001-8757-2447 ; 0000-0002-5176-9771 ; 0000-0002-0753-3702 ; 0000-0002-7897-9031 ; 0000-0002-0370-4623 ; 0000-0003-3430-2085</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8981989$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Duan, Xintao</creatorcontrib><creatorcontrib>Guo, Daidou</creatorcontrib><creatorcontrib>Liu, Nao</creatorcontrib><creatorcontrib>Li, Baoxia</creatorcontrib><creatorcontrib>Gou, Mengxiao</creatorcontrib><creatorcontrib>Qin, Chuan</creatorcontrib><title>A New High Capacity Image Steganography Method Combined With Image Elliptic Curve Cryptography and Deep Neural Network</title><title>IEEE access</title><addtitle>Access</addtitle><description>Image steganography is a technology that hides sensitive information into an image. The traditional image steganography method tends to securely embed secret information in the host image so that the payload capacity is almost ignored and the steganographic image quality needs to be improved for the Human Visual System(HVS). Therefore, in this work, we propose a new high capacity image steganography method based on deep learning. The Discrete Cosine Transform(DCT) is used to transform the secret image, and then the transformed image is encrypted by Elliptic Curve Cryptography(ECC) to improve the anti-detection property of the obtained image. To improve steganographic capacity, the SegNet Deep Neural Network with a set of Hiding and Extraction networks enables steganography and extraction of full-size images. The experimental results show that the method can effectively allocate each pixel in the image so that the relative capacity of steganography reaches 1. Besides, the image obtained using this steganography method has higher Peak Signal-to-Noise Ratio(PSNR) and Structural Similarity Index(SSIM) values, reaching 40dB and 0.96, respectively.</description><subject>Artificial neural networks</subject><subject>Cryptography</subject><subject>Curves</subject><subject>DCT</subject><subject>Decoding</subject><subject>Deep learning</subject><subject>deep neural network</subject><subject>Discrete cosine transform</subject><subject>Discrete cosine transforms</subject><subject>ECC</subject><subject>Elliptic curve cryptography</subject><subject>Image quality</subject><subject>Image steganography</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>SegNet</subject><subject>Signal to noise ratio</subject><subject>Steganography</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctu2zAQFIIWaJDkC3IhkLNdvh9HQ3UbA0lzcIoeCVpcyXRlU6XoBP77MpUblJclFjOzOztVdUvwnBBsPi_qerlezymmeE6NIoLqi-qSEmlmTDD54b__p-pmHHe4PF1aQl1WLwv0HV7Rfei2qHaDa0I-odXedYDWGTp3iF1yw_aEHiFvo0d13G_CATz6GfL2DFz2fRhyaFB9TC-A6nQa8j-aO3j0BWAoU47J9aXk15h-XVcfW9ePcHOuV9WPr8vn-n728PRtVS8eZg3HOs-kowY84XxDQPqNYEC0l8IbUNoJ3gqnixOjBCFaYCaZLuapNNAI6ZUGdlWtJl0f3c4OKexdOtnogv3biKmzLpXVe7BCtRwrQ0G0jBvMnVTlouAZtIJtDC1ad5PWkOLvI4zZ7uIxHcr6lnLBFaOKioJiE6pJcRwTtO9TCbZvedkpL_uWlz3nVVi3EysAwDtDm2JOG_YHkACPUg</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Duan, Xintao</creator><creator>Guo, Daidou</creator><creator>Liu, Nao</creator><creator>Li, Baoxia</creator><creator>Gou, Mengxiao</creator><creator>Qin, Chuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8757-2447</orcidid><orcidid>https://orcid.org/0000-0002-5176-9771</orcidid><orcidid>https://orcid.org/0000-0002-0753-3702</orcidid><orcidid>https://orcid.org/0000-0002-7897-9031</orcidid><orcidid>https://orcid.org/0000-0002-0370-4623</orcidid><orcidid>https://orcid.org/0000-0003-3430-2085</orcidid></search><sort><creationdate>2020</creationdate><title>A New High Capacity Image Steganography Method Combined With Image Elliptic Curve Cryptography and Deep Neural Network</title><author>Duan, Xintao ; Guo, Daidou ; Liu, Nao ; Li, Baoxia ; Gou, Mengxiao ; Qin, Chuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-6a29ed144b1e6db53e18d65d9e78a54f5a8081975118503638528269ec56d78e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Cryptography</topic><topic>Curves</topic><topic>DCT</topic><topic>Decoding</topic><topic>Deep learning</topic><topic>deep neural network</topic><topic>Discrete cosine transform</topic><topic>Discrete cosine transforms</topic><topic>ECC</topic><topic>Elliptic curve cryptography</topic><topic>Image quality</topic><topic>Image steganography</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>SegNet</topic><topic>Signal to noise ratio</topic><topic>Steganography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duan, Xintao</creatorcontrib><creatorcontrib>Guo, Daidou</creatorcontrib><creatorcontrib>Liu, Nao</creatorcontrib><creatorcontrib>Li, Baoxia</creatorcontrib><creatorcontrib>Gou, Mengxiao</creatorcontrib><creatorcontrib>Qin, Chuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Explore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duan, Xintao</au><au>Guo, Daidou</au><au>Liu, Nao</au><au>Li, Baoxia</au><au>Gou, Mengxiao</au><au>Qin, Chuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New High Capacity Image Steganography Method Combined With Image Elliptic Curve Cryptography and Deep Neural Network</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>25777</spage><epage>25788</epage><pages>25777-25788</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Image steganography is a technology that hides sensitive information into an image. The traditional image steganography method tends to securely embed secret information in the host image so that the payload capacity is almost ignored and the steganographic image quality needs to be improved for the Human Visual System(HVS). Therefore, in this work, we propose a new high capacity image steganography method based on deep learning. The Discrete Cosine Transform(DCT) is used to transform the secret image, and then the transformed image is encrypted by Elliptic Curve Cryptography(ECC) to improve the anti-detection property of the obtained image. To improve steganographic capacity, the SegNet Deep Neural Network with a set of Hiding and Extraction networks enables steganography and extraction of full-size images. The experimental results show that the method can effectively allocate each pixel in the image so that the relative capacity of steganography reaches 1. Besides, the image obtained using this steganography method has higher Peak Signal-to-Noise Ratio(PSNR) and Structural Similarity Index(SSIM) values, reaching 40dB and 0.96, respectively.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2971528</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8757-2447</orcidid><orcidid>https://orcid.org/0000-0002-5176-9771</orcidid><orcidid>https://orcid.org/0000-0002-0753-3702</orcidid><orcidid>https://orcid.org/0000-0002-7897-9031</orcidid><orcidid>https://orcid.org/0000-0002-0370-4623</orcidid><orcidid>https://orcid.org/0000-0003-3430-2085</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.25777-25788 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2454732725 |
source | IEEE Open Access Journals |
subjects | Artificial neural networks Cryptography Curves DCT Decoding Deep learning deep neural network Discrete cosine transform Discrete cosine transforms ECC Elliptic curve cryptography Image quality Image steganography Machine learning Neural networks SegNet Signal to noise ratio Steganography |
title | A New High Capacity Image Steganography Method Combined With Image Elliptic Curve Cryptography and Deep Neural Network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A00%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20High%20Capacity%20Image%20Steganography%20Method%20Combined%20With%20Image%20Elliptic%20Curve%20Cryptography%20and%20Deep%20Neural%20Network&rft.jtitle=IEEE%20access&rft.au=Duan,%20Xintao&rft.date=2020&rft.volume=8&rft.spage=25777&rft.epage=25788&rft.pages=25777-25788&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2971528&rft_dat=%3Cproquest_ieee_%3E2454732725%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-6a29ed144b1e6db53e18d65d9e78a54f5a8081975118503638528269ec56d78e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2454732725&rft_id=info:pmid/&rft_ieee_id=8981989&rfr_iscdi=true |