Loading…

A New High Capacity Image Steganography Method Combined With Image Elliptic Curve Cryptography and Deep Neural Network

Image steganography is a technology that hides sensitive information into an image. The traditional image steganography method tends to securely embed secret information in the host image so that the payload capacity is almost ignored and the steganographic image quality needs to be improved for the...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2020, Vol.8, p.25777-25788
Main Authors: Duan, Xintao, Guo, Daidou, Liu, Nao, Li, Baoxia, Gou, Mengxiao, Qin, Chuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-6a29ed144b1e6db53e18d65d9e78a54f5a8081975118503638528269ec56d78e3
cites cdi_FETCH-LOGICAL-c408t-6a29ed144b1e6db53e18d65d9e78a54f5a8081975118503638528269ec56d78e3
container_end_page 25788
container_issue
container_start_page 25777
container_title IEEE access
container_volume 8
creator Duan, Xintao
Guo, Daidou
Liu, Nao
Li, Baoxia
Gou, Mengxiao
Qin, Chuan
description Image steganography is a technology that hides sensitive information into an image. The traditional image steganography method tends to securely embed secret information in the host image so that the payload capacity is almost ignored and the steganographic image quality needs to be improved for the Human Visual System(HVS). Therefore, in this work, we propose a new high capacity image steganography method based on deep learning. The Discrete Cosine Transform(DCT) is used to transform the secret image, and then the transformed image is encrypted by Elliptic Curve Cryptography(ECC) to improve the anti-detection property of the obtained image. To improve steganographic capacity, the SegNet Deep Neural Network with a set of Hiding and Extraction networks enables steganography and extraction of full-size images. The experimental results show that the method can effectively allocate each pixel in the image so that the relative capacity of steganography reaches 1. Besides, the image obtained using this steganography method has higher Peak Signal-to-Noise Ratio(PSNR) and Structural Similarity Index(SSIM) values, reaching 40dB and 0.96, respectively.
doi_str_mv 10.1109/ACCESS.2020.2971528
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2454732725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8981989</ieee_id><doaj_id>oai_doaj_org_article_57f40792e5f34904a67020ed3ef53b92</doaj_id><sourcerecordid>2454732725</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-6a29ed144b1e6db53e18d65d9e78a54f5a8081975118503638528269ec56d78e3</originalsourceid><addsrcrecordid>eNpNUctu2zAQFIIWaJDkC3IhkLNdvh9HQ3UbA0lzcIoeCVpcyXRlU6XoBP77MpUblJclFjOzOztVdUvwnBBsPi_qerlezymmeE6NIoLqi-qSEmlmTDD54b__p-pmHHe4PF1aQl1WLwv0HV7Rfei2qHaDa0I-odXedYDWGTp3iF1yw_aEHiFvo0d13G_CATz6GfL2DFz2fRhyaFB9TC-A6nQa8j-aO3j0BWAoU47J9aXk15h-XVcfW9ePcHOuV9WPr8vn-n728PRtVS8eZg3HOs-kowY84XxDQPqNYEC0l8IbUNoJ3gqnixOjBCFaYCaZLuapNNAI6ZUGdlWtJl0f3c4OKexdOtnogv3biKmzLpXVe7BCtRwrQ0G0jBvMnVTlouAZtIJtDC1ad5PWkOLvI4zZ7uIxHcr6lnLBFaOKioJiE6pJcRwTtO9TCbZvedkpL_uWlz3nVVi3EysAwDtDm2JOG_YHkACPUg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454732725</pqid></control><display><type>article</type><title>A New High Capacity Image Steganography Method Combined With Image Elliptic Curve Cryptography and Deep Neural Network</title><source>IEEE Open Access Journals</source><creator>Duan, Xintao ; Guo, Daidou ; Liu, Nao ; Li, Baoxia ; Gou, Mengxiao ; Qin, Chuan</creator><creatorcontrib>Duan, Xintao ; Guo, Daidou ; Liu, Nao ; Li, Baoxia ; Gou, Mengxiao ; Qin, Chuan</creatorcontrib><description>Image steganography is a technology that hides sensitive information into an image. The traditional image steganography method tends to securely embed secret information in the host image so that the payload capacity is almost ignored and the steganographic image quality needs to be improved for the Human Visual System(HVS). Therefore, in this work, we propose a new high capacity image steganography method based on deep learning. The Discrete Cosine Transform(DCT) is used to transform the secret image, and then the transformed image is encrypted by Elliptic Curve Cryptography(ECC) to improve the anti-detection property of the obtained image. To improve steganographic capacity, the SegNet Deep Neural Network with a set of Hiding and Extraction networks enables steganography and extraction of full-size images. The experimental results show that the method can effectively allocate each pixel in the image so that the relative capacity of steganography reaches 1. Besides, the image obtained using this steganography method has higher Peak Signal-to-Noise Ratio(PSNR) and Structural Similarity Index(SSIM) values, reaching 40dB and 0.96, respectively.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2971528</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Cryptography ; Curves ; DCT ; Decoding ; Deep learning ; deep neural network ; Discrete cosine transform ; Discrete cosine transforms ; ECC ; Elliptic curve cryptography ; Image quality ; Image steganography ; Machine learning ; Neural networks ; SegNet ; Signal to noise ratio ; Steganography</subject><ispartof>IEEE access, 2020, Vol.8, p.25777-25788</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-6a29ed144b1e6db53e18d65d9e78a54f5a8081975118503638528269ec56d78e3</citedby><cites>FETCH-LOGICAL-c408t-6a29ed144b1e6db53e18d65d9e78a54f5a8081975118503638528269ec56d78e3</cites><orcidid>0000-0001-8757-2447 ; 0000-0002-5176-9771 ; 0000-0002-0753-3702 ; 0000-0002-7897-9031 ; 0000-0002-0370-4623 ; 0000-0003-3430-2085</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8981989$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Duan, Xintao</creatorcontrib><creatorcontrib>Guo, Daidou</creatorcontrib><creatorcontrib>Liu, Nao</creatorcontrib><creatorcontrib>Li, Baoxia</creatorcontrib><creatorcontrib>Gou, Mengxiao</creatorcontrib><creatorcontrib>Qin, Chuan</creatorcontrib><title>A New High Capacity Image Steganography Method Combined With Image Elliptic Curve Cryptography and Deep Neural Network</title><title>IEEE access</title><addtitle>Access</addtitle><description>Image steganography is a technology that hides sensitive information into an image. The traditional image steganography method tends to securely embed secret information in the host image so that the payload capacity is almost ignored and the steganographic image quality needs to be improved for the Human Visual System(HVS). Therefore, in this work, we propose a new high capacity image steganography method based on deep learning. The Discrete Cosine Transform(DCT) is used to transform the secret image, and then the transformed image is encrypted by Elliptic Curve Cryptography(ECC) to improve the anti-detection property of the obtained image. To improve steganographic capacity, the SegNet Deep Neural Network with a set of Hiding and Extraction networks enables steganography and extraction of full-size images. The experimental results show that the method can effectively allocate each pixel in the image so that the relative capacity of steganography reaches 1. Besides, the image obtained using this steganography method has higher Peak Signal-to-Noise Ratio(PSNR) and Structural Similarity Index(SSIM) values, reaching 40dB and 0.96, respectively.</description><subject>Artificial neural networks</subject><subject>Cryptography</subject><subject>Curves</subject><subject>DCT</subject><subject>Decoding</subject><subject>Deep learning</subject><subject>deep neural network</subject><subject>Discrete cosine transform</subject><subject>Discrete cosine transforms</subject><subject>ECC</subject><subject>Elliptic curve cryptography</subject><subject>Image quality</subject><subject>Image steganography</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>SegNet</subject><subject>Signal to noise ratio</subject><subject>Steganography</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctu2zAQFIIWaJDkC3IhkLNdvh9HQ3UbA0lzcIoeCVpcyXRlU6XoBP77MpUblJclFjOzOztVdUvwnBBsPi_qerlezymmeE6NIoLqi-qSEmlmTDD54b__p-pmHHe4PF1aQl1WLwv0HV7Rfei2qHaDa0I-odXedYDWGTp3iF1yw_aEHiFvo0d13G_CATz6GfL2DFz2fRhyaFB9TC-A6nQa8j-aO3j0BWAoU47J9aXk15h-XVcfW9ePcHOuV9WPr8vn-n728PRtVS8eZg3HOs-kowY84XxDQPqNYEC0l8IbUNoJ3gqnixOjBCFaYCaZLuapNNAI6ZUGdlWtJl0f3c4OKexdOtnogv3biKmzLpXVe7BCtRwrQ0G0jBvMnVTlouAZtIJtDC1ad5PWkOLvI4zZ7uIxHcr6lnLBFaOKioJiE6pJcRwTtO9TCbZvedkpL_uWlz3nVVi3EysAwDtDm2JOG_YHkACPUg</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Duan, Xintao</creator><creator>Guo, Daidou</creator><creator>Liu, Nao</creator><creator>Li, Baoxia</creator><creator>Gou, Mengxiao</creator><creator>Qin, Chuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8757-2447</orcidid><orcidid>https://orcid.org/0000-0002-5176-9771</orcidid><orcidid>https://orcid.org/0000-0002-0753-3702</orcidid><orcidid>https://orcid.org/0000-0002-7897-9031</orcidid><orcidid>https://orcid.org/0000-0002-0370-4623</orcidid><orcidid>https://orcid.org/0000-0003-3430-2085</orcidid></search><sort><creationdate>2020</creationdate><title>A New High Capacity Image Steganography Method Combined With Image Elliptic Curve Cryptography and Deep Neural Network</title><author>Duan, Xintao ; Guo, Daidou ; Liu, Nao ; Li, Baoxia ; Gou, Mengxiao ; Qin, Chuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-6a29ed144b1e6db53e18d65d9e78a54f5a8081975118503638528269ec56d78e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Cryptography</topic><topic>Curves</topic><topic>DCT</topic><topic>Decoding</topic><topic>Deep learning</topic><topic>deep neural network</topic><topic>Discrete cosine transform</topic><topic>Discrete cosine transforms</topic><topic>ECC</topic><topic>Elliptic curve cryptography</topic><topic>Image quality</topic><topic>Image steganography</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>SegNet</topic><topic>Signal to noise ratio</topic><topic>Steganography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duan, Xintao</creatorcontrib><creatorcontrib>Guo, Daidou</creatorcontrib><creatorcontrib>Liu, Nao</creatorcontrib><creatorcontrib>Li, Baoxia</creatorcontrib><creatorcontrib>Gou, Mengxiao</creatorcontrib><creatorcontrib>Qin, Chuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Explore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duan, Xintao</au><au>Guo, Daidou</au><au>Liu, Nao</au><au>Li, Baoxia</au><au>Gou, Mengxiao</au><au>Qin, Chuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New High Capacity Image Steganography Method Combined With Image Elliptic Curve Cryptography and Deep Neural Network</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>25777</spage><epage>25788</epage><pages>25777-25788</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Image steganography is a technology that hides sensitive information into an image. The traditional image steganography method tends to securely embed secret information in the host image so that the payload capacity is almost ignored and the steganographic image quality needs to be improved for the Human Visual System(HVS). Therefore, in this work, we propose a new high capacity image steganography method based on deep learning. The Discrete Cosine Transform(DCT) is used to transform the secret image, and then the transformed image is encrypted by Elliptic Curve Cryptography(ECC) to improve the anti-detection property of the obtained image. To improve steganographic capacity, the SegNet Deep Neural Network with a set of Hiding and Extraction networks enables steganography and extraction of full-size images. The experimental results show that the method can effectively allocate each pixel in the image so that the relative capacity of steganography reaches 1. Besides, the image obtained using this steganography method has higher Peak Signal-to-Noise Ratio(PSNR) and Structural Similarity Index(SSIM) values, reaching 40dB and 0.96, respectively.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2971528</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8757-2447</orcidid><orcidid>https://orcid.org/0000-0002-5176-9771</orcidid><orcidid>https://orcid.org/0000-0002-0753-3702</orcidid><orcidid>https://orcid.org/0000-0002-7897-9031</orcidid><orcidid>https://orcid.org/0000-0002-0370-4623</orcidid><orcidid>https://orcid.org/0000-0003-3430-2085</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.25777-25788
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2454732725
source IEEE Open Access Journals
subjects Artificial neural networks
Cryptography
Curves
DCT
Decoding
Deep learning
deep neural network
Discrete cosine transform
Discrete cosine transforms
ECC
Elliptic curve cryptography
Image quality
Image steganography
Machine learning
Neural networks
SegNet
Signal to noise ratio
Steganography
title A New High Capacity Image Steganography Method Combined With Image Elliptic Curve Cryptography and Deep Neural Network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A00%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20High%20Capacity%20Image%20Steganography%20Method%20Combined%20With%20Image%20Elliptic%20Curve%20Cryptography%20and%20Deep%20Neural%20Network&rft.jtitle=IEEE%20access&rft.au=Duan,%20Xintao&rft.date=2020&rft.volume=8&rft.spage=25777&rft.epage=25788&rft.pages=25777-25788&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2971528&rft_dat=%3Cproquest_ieee_%3E2454732725%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-6a29ed144b1e6db53e18d65d9e78a54f5a8081975118503638528269ec56d78e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2454732725&rft_id=info:pmid/&rft_ieee_id=8981989&rfr_iscdi=true