Loading…

Weakly Supervised Instance Segmentation Based on Two-Stage Transfer Learning

Weakly supervised instance segmentation, which could greatly decrease financial and time cost, is one of fundamental computer vision tasks. State-of-the-art methods mainly concentrate on improving the quality of generated pixel level labels, namely masks, using complex traditional segmentation metho...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2020, Vol.8, p.24135-24144
Main Authors: Sun, Yongqing, Liao, Shisha, Gao, Chenqiang, Xie, Chengjuan, Yang, Feng, Zhao, Yue, Sagata, Atsushi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-88601f478847f97386ef74880b02a80c2d698cf98a48b2a231ce79b317b029063
cites cdi_FETCH-LOGICAL-c408t-88601f478847f97386ef74880b02a80c2d698cf98a48b2a231ce79b317b029063
container_end_page 24144
container_issue
container_start_page 24135
container_title IEEE access
container_volume 8
creator Sun, Yongqing
Liao, Shisha
Gao, Chenqiang
Xie, Chengjuan
Yang, Feng
Zhao, Yue
Sagata, Atsushi
description Weakly supervised instance segmentation, which could greatly decrease financial and time cost, is one of fundamental computer vision tasks. State-of-the-art methods mainly concentrate on improving the quality of generated pixel level labels, namely masks, using complex traditional segmentation methods, and ignore the effect of the quality of generated masks. Namely, the masks of small object instances tend to be invalid, which would degrades the performance of instance segmentation. In this paper, we propose a two-stage transfer learning framework for weakly supervised instance segmentation. We explicitly discriminate the invalid and valid generated masks, and just utilize the valid masks for training to avoid the interference of invalid ones. We use a network-based transfer learning strategy to effectively utilize all useful information, including category labels and bounding-box information of all objects and valid generated masks. Besides, we further use a feature-mapping-based transfer learning strategy to improve the performance of small object instance segmentation. We demonstrate the effectiveness of the proposed method on the PASCAL VOC 2012, and the experimental results show that our proposed method is effective and outperforms state-of-the-art methods.
doi_str_mv 10.1109/ACCESS.2020.2969480
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2454732811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8977326</ieee_id><doaj_id>oai_doaj_org_article_2b9266b3fb2f4cd481ca5cb5b88af0fa</doaj_id><sourcerecordid>2454732811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-88601f478847f97386ef74880b02a80c2d698cf98a48b2a231ce79b317b029063</originalsourceid><addsrcrecordid>eNpNUU1P4zAQjRArgVh-AZdInFP8FXt8hIqFSpX2kKI9WhN3XKWUpNjpIv497qZCO5cZvXnvzUivKG44m3HO7N39fP7YNDPBBJsJq60CdlZcCq5tJWupz_-bL4rrlLYsF2SoNpfF8g_h6-6zbA57in-7ROty0acRe09lQ5s36kccu6EvH_C4y8PqY6iaETdUriL2KVAsl4Sx7_rNz-JHwF2i61O_Kl5-Pa7mz9Xy99Nifr-svGIwVgCa8aAMgDLBGgmaglEArGUCgXmx1hZ8sIAKWoFCck_GtpKbTLBMy6tiMfmuB9y6fezeMH66ATv3DxjixmEcO78jJ1ortG5laEVQfq2Ae6x9W7cAGFjA7HU7ee3j8H6gNLrtcIh9ft8JVSsjBXCeWXJi-TikFCl8X-XMHVNwUwrumII7pZBVN5OqI6JvBViTXbX8AiPhgdg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454732811</pqid></control><display><type>article</type><title>Weakly Supervised Instance Segmentation Based on Two-Stage Transfer Learning</title><source>IEEE Xplore Open Access Journals</source><creator>Sun, Yongqing ; Liao, Shisha ; Gao, Chenqiang ; Xie, Chengjuan ; Yang, Feng ; Zhao, Yue ; Sagata, Atsushi</creator><creatorcontrib>Sun, Yongqing ; Liao, Shisha ; Gao, Chenqiang ; Xie, Chengjuan ; Yang, Feng ; Zhao, Yue ; Sagata, Atsushi</creatorcontrib><description>Weakly supervised instance segmentation, which could greatly decrease financial and time cost, is one of fundamental computer vision tasks. State-of-the-art methods mainly concentrate on improving the quality of generated pixel level labels, namely masks, using complex traditional segmentation methods, and ignore the effect of the quality of generated masks. Namely, the masks of small object instances tend to be invalid, which would degrades the performance of instance segmentation. In this paper, we propose a two-stage transfer learning framework for weakly supervised instance segmentation. We explicitly discriminate the invalid and valid generated masks, and just utilize the valid masks for training to avoid the interference of invalid ones. We use a network-based transfer learning strategy to effectively utilize all useful information, including category labels and bounding-box information of all objects and valid generated masks. Besides, we further use a feature-mapping-based transfer learning strategy to improve the performance of small object instance segmentation. We demonstrate the effectiveness of the proposed method on the PASCAL VOC 2012, and the experimental results show that our proposed method is effective and outperforms state-of-the-art methods.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2969480</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Annotations ; Computer vision ; Image segmentation ; Instance segmentation ; Labels ; Learning ; Masks ; Object detection ; Performance degradation ; Performance enhancement ; Sun ; Task analysis ; Telecommunications ; Training ; transfer learning ; Weakly supervised</subject><ispartof>IEEE access, 2020, Vol.8, p.24135-24144</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-88601f478847f97386ef74880b02a80c2d698cf98a48b2a231ce79b317b029063</citedby><cites>FETCH-LOGICAL-c408t-88601f478847f97386ef74880b02a80c2d698cf98a48b2a231ce79b317b029063</cites><orcidid>0000-0002-7752-6559 ; 0000-0002-2047-4989 ; 0000-0002-2746-3270 ; 0000-0003-0413-8640 ; 0000-0003-0342-2797 ; 0000-0003-4174-4148 ; 0000-0003-3116-2371</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8977326$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4009,27612,27902,27903,27904,54912</link.rule.ids></links><search><creatorcontrib>Sun, Yongqing</creatorcontrib><creatorcontrib>Liao, Shisha</creatorcontrib><creatorcontrib>Gao, Chenqiang</creatorcontrib><creatorcontrib>Xie, Chengjuan</creatorcontrib><creatorcontrib>Yang, Feng</creatorcontrib><creatorcontrib>Zhao, Yue</creatorcontrib><creatorcontrib>Sagata, Atsushi</creatorcontrib><title>Weakly Supervised Instance Segmentation Based on Two-Stage Transfer Learning</title><title>IEEE access</title><addtitle>Access</addtitle><description>Weakly supervised instance segmentation, which could greatly decrease financial and time cost, is one of fundamental computer vision tasks. State-of-the-art methods mainly concentrate on improving the quality of generated pixel level labels, namely masks, using complex traditional segmentation methods, and ignore the effect of the quality of generated masks. Namely, the masks of small object instances tend to be invalid, which would degrades the performance of instance segmentation. In this paper, we propose a two-stage transfer learning framework for weakly supervised instance segmentation. We explicitly discriminate the invalid and valid generated masks, and just utilize the valid masks for training to avoid the interference of invalid ones. We use a network-based transfer learning strategy to effectively utilize all useful information, including category labels and bounding-box information of all objects and valid generated masks. Besides, we further use a feature-mapping-based transfer learning strategy to improve the performance of small object instance segmentation. We demonstrate the effectiveness of the proposed method on the PASCAL VOC 2012, and the experimental results show that our proposed method is effective and outperforms state-of-the-art methods.</description><subject>Annotations</subject><subject>Computer vision</subject><subject>Image segmentation</subject><subject>Instance segmentation</subject><subject>Labels</subject><subject>Learning</subject><subject>Masks</subject><subject>Object detection</subject><subject>Performance degradation</subject><subject>Performance enhancement</subject><subject>Sun</subject><subject>Task analysis</subject><subject>Telecommunications</subject><subject>Training</subject><subject>transfer learning</subject><subject>Weakly supervised</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1P4zAQjRArgVh-AZdInFP8FXt8hIqFSpX2kKI9WhN3XKWUpNjpIv497qZCO5cZvXnvzUivKG44m3HO7N39fP7YNDPBBJsJq60CdlZcCq5tJWupz_-bL4rrlLYsF2SoNpfF8g_h6-6zbA57in-7ROty0acRe09lQ5s36kccu6EvH_C4y8PqY6iaETdUriL2KVAsl4Sx7_rNz-JHwF2i61O_Kl5-Pa7mz9Xy99Nifr-svGIwVgCa8aAMgDLBGgmaglEArGUCgXmx1hZ8sIAKWoFCck_GtpKbTLBMy6tiMfmuB9y6fezeMH66ATv3DxjixmEcO78jJ1ortG5laEVQfq2Ae6x9W7cAGFjA7HU7ee3j8H6gNLrtcIh9ft8JVSsjBXCeWXJi-TikFCl8X-XMHVNwUwrumII7pZBVN5OqI6JvBViTXbX8AiPhgdg</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Sun, Yongqing</creator><creator>Liao, Shisha</creator><creator>Gao, Chenqiang</creator><creator>Xie, Chengjuan</creator><creator>Yang, Feng</creator><creator>Zhao, Yue</creator><creator>Sagata, Atsushi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7752-6559</orcidid><orcidid>https://orcid.org/0000-0002-2047-4989</orcidid><orcidid>https://orcid.org/0000-0002-2746-3270</orcidid><orcidid>https://orcid.org/0000-0003-0413-8640</orcidid><orcidid>https://orcid.org/0000-0003-0342-2797</orcidid><orcidid>https://orcid.org/0000-0003-4174-4148</orcidid><orcidid>https://orcid.org/0000-0003-3116-2371</orcidid></search><sort><creationdate>2020</creationdate><title>Weakly Supervised Instance Segmentation Based on Two-Stage Transfer Learning</title><author>Sun, Yongqing ; Liao, Shisha ; Gao, Chenqiang ; Xie, Chengjuan ; Yang, Feng ; Zhao, Yue ; Sagata, Atsushi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-88601f478847f97386ef74880b02a80c2d698cf98a48b2a231ce79b317b029063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Annotations</topic><topic>Computer vision</topic><topic>Image segmentation</topic><topic>Instance segmentation</topic><topic>Labels</topic><topic>Learning</topic><topic>Masks</topic><topic>Object detection</topic><topic>Performance degradation</topic><topic>Performance enhancement</topic><topic>Sun</topic><topic>Task analysis</topic><topic>Telecommunications</topic><topic>Training</topic><topic>transfer learning</topic><topic>Weakly supervised</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Yongqing</creatorcontrib><creatorcontrib>Liao, Shisha</creatorcontrib><creatorcontrib>Gao, Chenqiang</creatorcontrib><creatorcontrib>Xie, Chengjuan</creatorcontrib><creatorcontrib>Yang, Feng</creatorcontrib><creatorcontrib>Zhao, Yue</creatorcontrib><creatorcontrib>Sagata, Atsushi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals - May need to register for free articles</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Yongqing</au><au>Liao, Shisha</au><au>Gao, Chenqiang</au><au>Xie, Chengjuan</au><au>Yang, Feng</au><au>Zhao, Yue</au><au>Sagata, Atsushi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weakly Supervised Instance Segmentation Based on Two-Stage Transfer Learning</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>24135</spage><epage>24144</epage><pages>24135-24144</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Weakly supervised instance segmentation, which could greatly decrease financial and time cost, is one of fundamental computer vision tasks. State-of-the-art methods mainly concentrate on improving the quality of generated pixel level labels, namely masks, using complex traditional segmentation methods, and ignore the effect of the quality of generated masks. Namely, the masks of small object instances tend to be invalid, which would degrades the performance of instance segmentation. In this paper, we propose a two-stage transfer learning framework for weakly supervised instance segmentation. We explicitly discriminate the invalid and valid generated masks, and just utilize the valid masks for training to avoid the interference of invalid ones. We use a network-based transfer learning strategy to effectively utilize all useful information, including category labels and bounding-box information of all objects and valid generated masks. Besides, we further use a feature-mapping-based transfer learning strategy to improve the performance of small object instance segmentation. We demonstrate the effectiveness of the proposed method on the PASCAL VOC 2012, and the experimental results show that our proposed method is effective and outperforms state-of-the-art methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2969480</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7752-6559</orcidid><orcidid>https://orcid.org/0000-0002-2047-4989</orcidid><orcidid>https://orcid.org/0000-0002-2746-3270</orcidid><orcidid>https://orcid.org/0000-0003-0413-8640</orcidid><orcidid>https://orcid.org/0000-0003-0342-2797</orcidid><orcidid>https://orcid.org/0000-0003-4174-4148</orcidid><orcidid>https://orcid.org/0000-0003-3116-2371</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.24135-24144
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2454732811
source IEEE Xplore Open Access Journals
subjects Annotations
Computer vision
Image segmentation
Instance segmentation
Labels
Learning
Masks
Object detection
Performance degradation
Performance enhancement
Sun
Task analysis
Telecommunications
Training
transfer learning
Weakly supervised
title Weakly Supervised Instance Segmentation Based on Two-Stage Transfer Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A07%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weakly%20Supervised%20Instance%20Segmentation%20Based%20on%20Two-Stage%20Transfer%20Learning&rft.jtitle=IEEE%20access&rft.au=Sun,%20Yongqing&rft.date=2020&rft.volume=8&rft.spage=24135&rft.epage=24144&rft.pages=24135-24144&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2969480&rft_dat=%3Cproquest_ieee_%3E2454732811%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-88601f478847f97386ef74880b02a80c2d698cf98a48b2a231ce79b317b029063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2454732811&rft_id=info:pmid/&rft_ieee_id=8977326&rfr_iscdi=true