Loading…
Intelligent Emotion Detection Method Based on Deep Learning in Medical and Health Data
Emotional abnormality may be brought out by physiological fatigue. In order to solve the problem, an emotion detection method based on deep learning in medical and health data is proposed in this paper. First of all, the related content of emotional fatigue is studied. The concept and the classifica...
Saved in:
Published in: | IEEE access 2020, Vol.8, p.3802-3811 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Emotional abnormality may be brought out by physiological fatigue. In order to solve the problem, an emotion detection method based on deep learning in medical and health data is proposed in this paper. First of all, the related content of emotional fatigue is studied. The concept and the classification of emotional fatigue are introduced. Then, a multi-modal data emotional fatigue detection system is designed. In the system, multi-channel convolutional aotoencoder neural network is used to extract electrocardiograms (ECG) data features and emotional text features for emotional fatigue detection. Secondly, the network structure of learning ECG features by multi-channel convolutional aotoencoder model is introduced in detail. And the network structure of learning emotional text features by convolutional aotoencoder model is also described in detail. Finally, multi-modal data features are combined for emotional detection. It is shown by the experimental results that the proposed model has an average accuracy of more than 85% in predicting emotional fatigue. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2019.2961139 |