Loading…
Waste Heat Recovery System Applied to a High-Performance Video Card
This paper presents results given by a waste heat recovery (WHR) system applied to a high-performance video card, as well as average energy generated per hour according to emulation of computer graphics requirements demanded by the user while the card is working. A WHR system includes three phases:...
Saved in:
Published in: | IEEE access 2020, Vol.8, p.6272-6281 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents results given by a waste heat recovery (WHR) system applied to a high-performance video card, as well as average energy generated per hour according to emulation of computer graphics requirements demanded by the user while the card is working. A WHR system includes three phases: (1) waste heat collection, (2) energy conversion and (3) signal conditioning. The analysis of the WHR system is presented. The emulation of waste heat has been generated using electrical resistors as if they were the main components that generate waste heat, mainly the GPU (graphics processing unit), and DDR3 memories. This WHR system has considered the MSI-R4850 video card as a reference, operation temperature of which has an overall range between 60°C- 90°C. Thermoelectric generator modules (TEG) are based on the Seebeck effect, and the thermoelectric array used is an important part of the WHR system, which has been constructed based on the locations of the main components to convert waste heat into electrical power. The waste heat recovery process has two treatments: First, once the operating conditions, per GPU and DDR3 memories have been emulated, the energy recovered is measured per component and whole WHR system; the second one measures energy recovered considering the output signal conditioning of the WHR system, which was converted to 5V output through a DC-DC boost converter, while the input voltage operates within a range (0.9V- 5V). The energy recovered may be applied to low-power electronic devices, which is a contribution to energy efficiency. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2020.2964207 |