Loading…
Neural Networks in Accounting: Clustering Firm Performance Using Financial Reporting Data
This paper considers the use of neural networks—namely self-organizing maps (SOMs)—to analyze and cluster firms' financial performance. Applying SOMs to financial statement data is a consolidated practice; however, in this paper SOMs are used to overcome several limitations encountered in previ...
Saved in:
Published in: | The Journal of information systems 2020-06, Vol.34 (2), p.149-166 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-25c7d9569932ad8e664f9061d1c389891af8712ffb773d34d627ccd57e767043 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-25c7d9569932ad8e664f9061d1c389891af8712ffb773d34d627ccd57e767043 |
container_end_page | 166 |
container_issue | 2 |
container_start_page | 149 |
container_title | The Journal of information systems |
container_volume | 34 |
creator | Dameri, Renata Paola Garelli, Roberto Resta, Marina |
description | This paper considers the use of neural networks—namely self-organizing maps (SOMs)—to analyze and cluster firms' financial performance. Applying SOMs to financial statement data is a consolidated practice; however, in this paper SOMs are used to overcome several limitations encountered in previous works on financial reporting indicators such as the small number of companies in the sample, the limited number of ratios, the homogeneity of the economic sector, and the lack of explanation and further analysis of the SOM outputs. This study uses a large financial dataset related to more than 3,000 companies belonging to every economic sector; it demonstrates that SOMs can effectively process a large dataset of heterogeneous data. Moreover, the SOM results are supported by detailed explanations of the research methodology applied, and further traditional financial analysis addresses the black box nature of the SOMs and can help professionals in the understanding and use of SOMs. |
doi_str_mv | 10.2308/isys-18-002 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2455567199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2455567199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-25c7d9569932ad8e664f9061d1c389891af8712ffb773d34d627ccd57e767043</originalsourceid><addsrcrecordid>eNotkE1LAzEQhoMoWFdP_oGAR1nNx-bLW6lWhVJF6sFTiNlEtrabOtlF-u_dpZ7mnWHmGXgQuqTkhnGib5u8zyXVJSHsCE2oELpURphjNCFaj1mLU3SW85oQohhXE_SxDD24DV6G7jfBd8ZNi6fep77tmvbrDs82fe4CDBnPG9ji1wAxwda1PuD3fBi3Q9cMjLewSzCe4XvXuXN0Et0mh4v_WqDV_GE1eyoXL4_Ps-mi9MzwrmTCq9oIaQxnrtZByioaImlNPddGG-qiVpTF-KkUr3lVS6a8r4UKSipS8QJdHbA7SD99yJ1dpx7a4aNllRBCKjqgC3R92PKQcoYQ7Q6arYO9pcSO6uyozlJtB3X8D32fYcc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455567199</pqid></control><display><type>article</type><title>Neural Networks in Accounting: Clustering Firm Performance Using Financial Reporting Data</title><source>EBSCOhost Business Source Ultimate</source><creator>Dameri, Renata Paola ; Garelli, Roberto ; Resta, Marina</creator><creatorcontrib>Dameri, Renata Paola ; Garelli, Roberto ; Resta, Marina</creatorcontrib><description>This paper considers the use of neural networks—namely self-organizing maps (SOMs)—to analyze and cluster firms' financial performance. Applying SOMs to financial statement data is a consolidated practice; however, in this paper SOMs are used to overcome several limitations encountered in previous works on financial reporting indicators such as the small number of companies in the sample, the limited number of ratios, the homogeneity of the economic sector, and the lack of explanation and further analysis of the SOM outputs. This study uses a large financial dataset related to more than 3,000 companies belonging to every economic sector; it demonstrates that SOMs can effectively process a large dataset of heterogeneous data. Moreover, the SOM results are supported by detailed explanations of the research methodology applied, and further traditional financial analysis addresses the black box nature of the SOMs and can help professionals in the understanding and use of SOMs.</description><identifier>ISSN: 0888-7985</identifier><identifier>EISSN: 1558-7959</identifier><identifier>DOI: 10.2308/isys-18-002</identifier><language>eng</language><publisher>Sarasota: American Accounting Association</publisher><subject>Accounting ; Financial analysis ; Financial performance ; Financial reporting ; Financial statements ; Neural networks</subject><ispartof>The Journal of information systems, 2020-06, Vol.34 (2), p.149-166</ispartof><rights>Copyright American Accounting Association Summer 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-25c7d9569932ad8e664f9061d1c389891af8712ffb773d34d627ccd57e767043</citedby><cites>FETCH-LOGICAL-c293t-25c7d9569932ad8e664f9061d1c389891af8712ffb773d34d627ccd57e767043</cites><orcidid>0000-0002-0001-116X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Dameri, Renata Paola</creatorcontrib><creatorcontrib>Garelli, Roberto</creatorcontrib><creatorcontrib>Resta, Marina</creatorcontrib><title>Neural Networks in Accounting: Clustering Firm Performance Using Financial Reporting Data</title><title>The Journal of information systems</title><description>This paper considers the use of neural networks—namely self-organizing maps (SOMs)—to analyze and cluster firms' financial performance. Applying SOMs to financial statement data is a consolidated practice; however, in this paper SOMs are used to overcome several limitations encountered in previous works on financial reporting indicators such as the small number of companies in the sample, the limited number of ratios, the homogeneity of the economic sector, and the lack of explanation and further analysis of the SOM outputs. This study uses a large financial dataset related to more than 3,000 companies belonging to every economic sector; it demonstrates that SOMs can effectively process a large dataset of heterogeneous data. Moreover, the SOM results are supported by detailed explanations of the research methodology applied, and further traditional financial analysis addresses the black box nature of the SOMs and can help professionals in the understanding and use of SOMs.</description><subject>Accounting</subject><subject>Financial analysis</subject><subject>Financial performance</subject><subject>Financial reporting</subject><subject>Financial statements</subject><subject>Neural networks</subject><issn>0888-7985</issn><issn>1558-7959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEQhoMoWFdP_oGAR1nNx-bLW6lWhVJF6sFTiNlEtrabOtlF-u_dpZ7mnWHmGXgQuqTkhnGib5u8zyXVJSHsCE2oELpURphjNCFaj1mLU3SW85oQohhXE_SxDD24DV6G7jfBd8ZNi6fep77tmvbrDs82fe4CDBnPG9ji1wAxwda1PuD3fBi3Q9cMjLewSzCe4XvXuXN0Et0mh4v_WqDV_GE1eyoXL4_Ps-mi9MzwrmTCq9oIaQxnrtZByioaImlNPddGG-qiVpTF-KkUr3lVS6a8r4UKSipS8QJdHbA7SD99yJ1dpx7a4aNllRBCKjqgC3R92PKQcoYQ7Q6arYO9pcSO6uyozlJtB3X8D32fYcc</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Dameri, Renata Paola</creator><creator>Garelli, Roberto</creator><creator>Resta, Marina</creator><general>American Accounting Association</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0001-116X</orcidid></search><sort><creationdate>20200601</creationdate><title>Neural Networks in Accounting: Clustering Firm Performance Using Financial Reporting Data</title><author>Dameri, Renata Paola ; Garelli, Roberto ; Resta, Marina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-25c7d9569932ad8e664f9061d1c389891af8712ffb773d34d627ccd57e767043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accounting</topic><topic>Financial analysis</topic><topic>Financial performance</topic><topic>Financial reporting</topic><topic>Financial statements</topic><topic>Neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dameri, Renata Paola</creatorcontrib><creatorcontrib>Garelli, Roberto</creatorcontrib><creatorcontrib>Resta, Marina</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dameri, Renata Paola</au><au>Garelli, Roberto</au><au>Resta, Marina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural Networks in Accounting: Clustering Firm Performance Using Financial Reporting Data</atitle><jtitle>The Journal of information systems</jtitle><date>2020-06-01</date><risdate>2020</risdate><volume>34</volume><issue>2</issue><spage>149</spage><epage>166</epage><pages>149-166</pages><issn>0888-7985</issn><eissn>1558-7959</eissn><abstract>This paper considers the use of neural networks—namely self-organizing maps (SOMs)—to analyze and cluster firms' financial performance. Applying SOMs to financial statement data is a consolidated practice; however, in this paper SOMs are used to overcome several limitations encountered in previous works on financial reporting indicators such as the small number of companies in the sample, the limited number of ratios, the homogeneity of the economic sector, and the lack of explanation and further analysis of the SOM outputs. This study uses a large financial dataset related to more than 3,000 companies belonging to every economic sector; it demonstrates that SOMs can effectively process a large dataset of heterogeneous data. Moreover, the SOM results are supported by detailed explanations of the research methodology applied, and further traditional financial analysis addresses the black box nature of the SOMs and can help professionals in the understanding and use of SOMs.</abstract><cop>Sarasota</cop><pub>American Accounting Association</pub><doi>10.2308/isys-18-002</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-0001-116X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-7985 |
ispartof | The Journal of information systems, 2020-06, Vol.34 (2), p.149-166 |
issn | 0888-7985 1558-7959 |
language | eng |
recordid | cdi_proquest_journals_2455567199 |
source | EBSCOhost Business Source Ultimate |
subjects | Accounting Financial analysis Financial performance Financial reporting Financial statements Neural networks |
title | Neural Networks in Accounting: Clustering Firm Performance Using Financial Reporting Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A00%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20Networks%20in%20Accounting:%20Clustering%20Firm%20Performance%20Using%20Financial%20Reporting%20Data&rft.jtitle=The%20Journal%20of%20information%20systems&rft.au=Dameri,%20Renata%20Paola&rft.date=2020-06-01&rft.volume=34&rft.issue=2&rft.spage=149&rft.epage=166&rft.pages=149-166&rft.issn=0888-7985&rft.eissn=1558-7959&rft_id=info:doi/10.2308/isys-18-002&rft_dat=%3Cproquest_cross%3E2455567199%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-25c7d9569932ad8e664f9061d1c389891af8712ffb773d34d627ccd57e767043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455567199&rft_id=info:pmid/&rfr_iscdi=true |