Loading…

Neural Networks in Accounting: Clustering Firm Performance Using Financial Reporting Data

This paper considers the use of neural networks—namely self-organizing maps (SOMs)—to analyze and cluster firms' financial performance. Applying SOMs to financial statement data is a consolidated practice; however, in this paper SOMs are used to overcome several limitations encountered in previ...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of information systems 2020-06, Vol.34 (2), p.149-166
Main Authors: Dameri, Renata Paola, Garelli, Roberto, Resta, Marina
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-25c7d9569932ad8e664f9061d1c389891af8712ffb773d34d627ccd57e767043
cites cdi_FETCH-LOGICAL-c293t-25c7d9569932ad8e664f9061d1c389891af8712ffb773d34d627ccd57e767043
container_end_page 166
container_issue 2
container_start_page 149
container_title The Journal of information systems
container_volume 34
creator Dameri, Renata Paola
Garelli, Roberto
Resta, Marina
description This paper considers the use of neural networks—namely self-organizing maps (SOMs)—to analyze and cluster firms' financial performance. Applying SOMs to financial statement data is a consolidated practice; however, in this paper SOMs are used to overcome several limitations encountered in previous works on financial reporting indicators such as the small number of companies in the sample, the limited number of ratios, the homogeneity of the economic sector, and the lack of explanation and further analysis of the SOM outputs. This study uses a large financial dataset related to more than 3,000 companies belonging to every economic sector; it demonstrates that SOMs can effectively process a large dataset of heterogeneous data. Moreover, the SOM results are supported by detailed explanations of the research methodology applied, and further traditional financial analysis addresses the black box nature of the SOMs and can help professionals in the understanding and use of SOMs.
doi_str_mv 10.2308/isys-18-002
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2455567199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2455567199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-25c7d9569932ad8e664f9061d1c389891af8712ffb773d34d627ccd57e767043</originalsourceid><addsrcrecordid>eNotkE1LAzEQhoMoWFdP_oGAR1nNx-bLW6lWhVJF6sFTiNlEtrabOtlF-u_dpZ7mnWHmGXgQuqTkhnGib5u8zyXVJSHsCE2oELpURphjNCFaj1mLU3SW85oQohhXE_SxDD24DV6G7jfBd8ZNi6fep77tmvbrDs82fe4CDBnPG9ji1wAxwda1PuD3fBi3Q9cMjLewSzCe4XvXuXN0Et0mh4v_WqDV_GE1eyoXL4_Ps-mi9MzwrmTCq9oIaQxnrtZByioaImlNPddGG-qiVpTF-KkUr3lVS6a8r4UKSipS8QJdHbA7SD99yJ1dpx7a4aNllRBCKjqgC3R92PKQcoYQ7Q6arYO9pcSO6uyozlJtB3X8D32fYcc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455567199</pqid></control><display><type>article</type><title>Neural Networks in Accounting: Clustering Firm Performance Using Financial Reporting Data</title><source>EBSCOhost Business Source Ultimate</source><creator>Dameri, Renata Paola ; Garelli, Roberto ; Resta, Marina</creator><creatorcontrib>Dameri, Renata Paola ; Garelli, Roberto ; Resta, Marina</creatorcontrib><description>This paper considers the use of neural networks—namely self-organizing maps (SOMs)—to analyze and cluster firms' financial performance. Applying SOMs to financial statement data is a consolidated practice; however, in this paper SOMs are used to overcome several limitations encountered in previous works on financial reporting indicators such as the small number of companies in the sample, the limited number of ratios, the homogeneity of the economic sector, and the lack of explanation and further analysis of the SOM outputs. This study uses a large financial dataset related to more than 3,000 companies belonging to every economic sector; it demonstrates that SOMs can effectively process a large dataset of heterogeneous data. Moreover, the SOM results are supported by detailed explanations of the research methodology applied, and further traditional financial analysis addresses the black box nature of the SOMs and can help professionals in the understanding and use of SOMs.</description><identifier>ISSN: 0888-7985</identifier><identifier>EISSN: 1558-7959</identifier><identifier>DOI: 10.2308/isys-18-002</identifier><language>eng</language><publisher>Sarasota: American Accounting Association</publisher><subject>Accounting ; Financial analysis ; Financial performance ; Financial reporting ; Financial statements ; Neural networks</subject><ispartof>The Journal of information systems, 2020-06, Vol.34 (2), p.149-166</ispartof><rights>Copyright American Accounting Association Summer 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-25c7d9569932ad8e664f9061d1c389891af8712ffb773d34d627ccd57e767043</citedby><cites>FETCH-LOGICAL-c293t-25c7d9569932ad8e664f9061d1c389891af8712ffb773d34d627ccd57e767043</cites><orcidid>0000-0002-0001-116X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Dameri, Renata Paola</creatorcontrib><creatorcontrib>Garelli, Roberto</creatorcontrib><creatorcontrib>Resta, Marina</creatorcontrib><title>Neural Networks in Accounting: Clustering Firm Performance Using Financial Reporting Data</title><title>The Journal of information systems</title><description>This paper considers the use of neural networks—namely self-organizing maps (SOMs)—to analyze and cluster firms' financial performance. Applying SOMs to financial statement data is a consolidated practice; however, in this paper SOMs are used to overcome several limitations encountered in previous works on financial reporting indicators such as the small number of companies in the sample, the limited number of ratios, the homogeneity of the economic sector, and the lack of explanation and further analysis of the SOM outputs. This study uses a large financial dataset related to more than 3,000 companies belonging to every economic sector; it demonstrates that SOMs can effectively process a large dataset of heterogeneous data. Moreover, the SOM results are supported by detailed explanations of the research methodology applied, and further traditional financial analysis addresses the black box nature of the SOMs and can help professionals in the understanding and use of SOMs.</description><subject>Accounting</subject><subject>Financial analysis</subject><subject>Financial performance</subject><subject>Financial reporting</subject><subject>Financial statements</subject><subject>Neural networks</subject><issn>0888-7985</issn><issn>1558-7959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEQhoMoWFdP_oGAR1nNx-bLW6lWhVJF6sFTiNlEtrabOtlF-u_dpZ7mnWHmGXgQuqTkhnGib5u8zyXVJSHsCE2oELpURphjNCFaj1mLU3SW85oQohhXE_SxDD24DV6G7jfBd8ZNi6fep77tmvbrDs82fe4CDBnPG9ji1wAxwda1PuD3fBi3Q9cMjLewSzCe4XvXuXN0Et0mh4v_WqDV_GE1eyoXL4_Ps-mi9MzwrmTCq9oIaQxnrtZByioaImlNPddGG-qiVpTF-KkUr3lVS6a8r4UKSipS8QJdHbA7SD99yJ1dpx7a4aNllRBCKjqgC3R92PKQcoYQ7Q6arYO9pcSO6uyozlJtB3X8D32fYcc</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Dameri, Renata Paola</creator><creator>Garelli, Roberto</creator><creator>Resta, Marina</creator><general>American Accounting Association</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0001-116X</orcidid></search><sort><creationdate>20200601</creationdate><title>Neural Networks in Accounting: Clustering Firm Performance Using Financial Reporting Data</title><author>Dameri, Renata Paola ; Garelli, Roberto ; Resta, Marina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-25c7d9569932ad8e664f9061d1c389891af8712ffb773d34d627ccd57e767043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accounting</topic><topic>Financial analysis</topic><topic>Financial performance</topic><topic>Financial reporting</topic><topic>Financial statements</topic><topic>Neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dameri, Renata Paola</creatorcontrib><creatorcontrib>Garelli, Roberto</creatorcontrib><creatorcontrib>Resta, Marina</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dameri, Renata Paola</au><au>Garelli, Roberto</au><au>Resta, Marina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural Networks in Accounting: Clustering Firm Performance Using Financial Reporting Data</atitle><jtitle>The Journal of information systems</jtitle><date>2020-06-01</date><risdate>2020</risdate><volume>34</volume><issue>2</issue><spage>149</spage><epage>166</epage><pages>149-166</pages><issn>0888-7985</issn><eissn>1558-7959</eissn><abstract>This paper considers the use of neural networks—namely self-organizing maps (SOMs)—to analyze and cluster firms' financial performance. Applying SOMs to financial statement data is a consolidated practice; however, in this paper SOMs are used to overcome several limitations encountered in previous works on financial reporting indicators such as the small number of companies in the sample, the limited number of ratios, the homogeneity of the economic sector, and the lack of explanation and further analysis of the SOM outputs. This study uses a large financial dataset related to more than 3,000 companies belonging to every economic sector; it demonstrates that SOMs can effectively process a large dataset of heterogeneous data. Moreover, the SOM results are supported by detailed explanations of the research methodology applied, and further traditional financial analysis addresses the black box nature of the SOMs and can help professionals in the understanding and use of SOMs.</abstract><cop>Sarasota</cop><pub>American Accounting Association</pub><doi>10.2308/isys-18-002</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-0001-116X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0888-7985
ispartof The Journal of information systems, 2020-06, Vol.34 (2), p.149-166
issn 0888-7985
1558-7959
language eng
recordid cdi_proquest_journals_2455567199
source EBSCOhost Business Source Ultimate
subjects Accounting
Financial analysis
Financial performance
Financial reporting
Financial statements
Neural networks
title Neural Networks in Accounting: Clustering Firm Performance Using Financial Reporting Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A00%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20Networks%20in%20Accounting:%20Clustering%20Firm%20Performance%20Using%20Financial%20Reporting%20Data&rft.jtitle=The%20Journal%20of%20information%20systems&rft.au=Dameri,%20Renata%20Paola&rft.date=2020-06-01&rft.volume=34&rft.issue=2&rft.spage=149&rft.epage=166&rft.pages=149-166&rft.issn=0888-7985&rft.eissn=1558-7959&rft_id=info:doi/10.2308/isys-18-002&rft_dat=%3Cproquest_cross%3E2455567199%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-25c7d9569932ad8e664f9061d1c389891af8712ffb773d34d627ccd57e767043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455567199&rft_id=info:pmid/&rfr_iscdi=true