Loading…

Realistic Multi-Scale Modeling of Household Electricity Behaviors

To improve the management and reliability of power distribution networks, there is a strong demand for models simulating energy loads in a realistic way. In this paper, we present a novel multi-scale model to generate realistic residential load profiles at different spatial-temporal resolutions. By...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2019, Vol.7, p.2467-2489
Main Authors: Bottaccioli, Lorenzo, Di Cataldo, Santa, Acquaviva, Andrea, Patti, Edoardo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To improve the management and reliability of power distribution networks, there is a strong demand for models simulating energy loads in a realistic way. In this paper, we present a novel multi-scale model to generate realistic residential load profiles at different spatial-temporal resolutions. By taking advantage of the information from census and national surveys, we generate statistically consistent populations of heterogeneous families with their respective appliances. Exploiting a bottom-up approach based on Monte Carlo Non-Homogeneous Semi-Markov, we provide household end-user behaviors and realistic households load profiles on a daily as well as on a weekly basis, for weekdays and weekends. The proposed approach overcomes the limitations of the state-of-the-art solutions that consider neither the time-dependency of the probability of performing specific activities in a house, nor their duration or are limited in the type of probability distributions they can model. On top of that, it provides outcomes that are not limited to a per-day basis. The range of available space and time resolutions span from single household to district and from second to year, respectively, featuring multi-level aggregation of the simulation outcomes. To demonstrate the accuracy of our model, we present experimental results obtained by simulating realistic populations in a period covering a whole calendar year and analyze our model's outcome at different scales. Then, we compare such results with three different data-sets that provide real load consumption at the household, national, and European levels, respectively.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2018.2886201