Loading…
U-Slot Patch Antenna Principle and Design Methodology Using Characteristic Mode Analysis and Coupled Mode Theory
Patch antennas incorporating a U-shaped slot are well-known to have relatively large (about 30%) impedance bandwidths. This work uses characteristic mode analysis (CMA) to explain the impedance behavior of a classic U-slot patch geometry in terms of coupled mode theory and shows the relevant modes a...
Saved in:
Published in: | IEEE access 2019-01, Vol.7, p.109375-109385 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Patch antennas incorporating a U-shaped slot are well-known to have relatively large (about 30%) impedance bandwidths. This work uses characteristic mode analysis (CMA) to explain the impedance behavior of a classic U-slot patch geometry in terms of coupled mode theory and shows the relevant modes are in-phase and anti-phase coupled modes whose resonant frequencies are governed by coupled mode theory. Additional analysis shows that one uncoupled resonator is the conventional TM 01 patch mode and the other is a lumped LC resonator involving the slot and the probe. An equivalent circuit model for the antenna is given wherein element values are extracted from CMA data and which explicitly demonstrates coupling between these two resonators. The circuit model approximately reproduces the impedance locus of the driven simulation. A design methodology based on coupled mode theory and guided by CMA is presented that allows wideband U-slot patch geometries to be designed quickly and efficiently. The methodology is illustrated through example. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2019.2933175 |