Loading…

A Deep Learning Approach for Energy Efficient Computational Offloading in Mobile Edge Computing

Mobile edge computing (MEC) has shown tremendous potential as a means for computationally intensive mobile applications by partially or entirely offloading computations to a nearby server to minimize the energy consumption of user equipment (UE). However, the task of selecting an optimal set of comp...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2019, Vol.7, p.149623-149633
Main Authors: Ali, Zaiwar, Jiao, Lei, Baker, Thar, Abbas, Ghulam, Abbas, Ziaul Haq, Khaf, Sadia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c474t-9de9cad92b7f104aa2a2f6aa3b32670e0de8078f7e171564688885c10c10867f3
cites cdi_FETCH-LOGICAL-c474t-9de9cad92b7f104aa2a2f6aa3b32670e0de8078f7e171564688885c10c10867f3
container_end_page 149633
container_issue
container_start_page 149623
container_title IEEE access
container_volume 7
creator Ali, Zaiwar
Jiao, Lei
Baker, Thar
Abbas, Ghulam
Abbas, Ziaul Haq
Khaf, Sadia
description Mobile edge computing (MEC) has shown tremendous potential as a means for computationally intensive mobile applications by partially or entirely offloading computations to a nearby server to minimize the energy consumption of user equipment (UE). However, the task of selecting an optimal set of components to offload considering the amount of data transfer as well as the latency in communication is a complex problem. In this paper, we propose a novel energy-efficient deep learning based offloading scheme (EEDOS) to train a deep learning based smart decision-making algorithm that selects an optimal set of application components based on remaining energy of UEs, energy consumption by application components, network conditions, computational load, amount of data transfer, and delays in communication. We formulate the cost function involving all aforementioned factors, obtain the cost for all possible combinations of component offloading policies, select the optimal policies over an exhaustive dataset, and train a deep learning network as an alternative for the extensive computations involved. Simulation results show that our proposed model is promising in terms of accuracy and energy consumption of UEs.
doi_str_mv 10.1109/ACCESS.2019.2947053
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2455605552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8866714</ieee_id><doaj_id>oai_doaj_org_article_14606383acff44afa0a34c9e9808f48c</doaj_id><sourcerecordid>2455605552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-9de9cad92b7f104aa2a2f6aa3b32670e0de8078f7e171564688885c10c10867f3</originalsourceid><addsrcrecordid>eNpNUU1r3DAQNaWFhjS_IBdBz7vV98dxcd02sCWHtGcxK4-2WhzLlb2H_Ptq4yV0EMzw5r0npNc094xuGaPuy65tu6enLafMbbmThirxrrnhTLuNUEK__2_-2NzN84nWshVS5qbxO_IVcSJ7hDKm8Uh201QyhD8k5kK6EcvxhXQxppBwXEibn6fzAkvKIwzkMcYhQ3-RpZH8zIc0IOn6I155dfGp-RBhmPHu2m-b39-6X-2Pzf7x-0O722-CNHLZuB5dgN7xg4mMSgAOPGoAcRBcG4q0R0uNjQaZYUpLbWupwGg9VpsobpuH1bfPcPJTSc9QXnyG5F-BXI4eypLCgJ5JTbWwAkKMUkIECkIGh85SG6UN1evz6lV_4u8Z58Wf8rnUB8-eS6U0VUrxyhIrK5Q8zwXj262M-kswfg3GX4Lx12Cq6n5VJUR8U1irtWFS_ANIuIhV</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455605552</pqid></control><display><type>article</type><title>A Deep Learning Approach for Energy Efficient Computational Offloading in Mobile Edge Computing</title><source>IEEE Xplore Open Access Journals</source><creator>Ali, Zaiwar ; Jiao, Lei ; Baker, Thar ; Abbas, Ghulam ; Abbas, Ziaul Haq ; Khaf, Sadia</creator><creatorcontrib>Ali, Zaiwar ; Jiao, Lei ; Baker, Thar ; Abbas, Ghulam ; Abbas, Ziaul Haq ; Khaf, Sadia</creatorcontrib><description>Mobile edge computing (MEC) has shown tremendous potential as a means for computationally intensive mobile applications by partially or entirely offloading computations to a nearby server to minimize the energy consumption of user equipment (UE). However, the task of selecting an optimal set of components to offload considering the amount of data transfer as well as the latency in communication is a complex problem. In this paper, we propose a novel energy-efficient deep learning based offloading scheme (EEDOS) to train a deep learning based smart decision-making algorithm that selects an optimal set of application components based on remaining energy of UEs, energy consumption by application components, network conditions, computational load, amount of data transfer, and delays in communication. We formulate the cost function involving all aforementioned factors, obtain the cost for all possible combinations of component offloading policies, select the optimal policies over an exhaustive dataset, and train a deep learning network as an alternative for the extensive computations involved. Simulation results show that our proposed model is promising in terms of accuracy and energy consumption of UEs.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2947053</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Applications programs ; Computation offloading ; Computational offloading ; Cost function ; Data transfer (computers) ; Decision making ; Deep learning ; Edge computing ; Energy consumption ; energy efficient offloading ; Machine learning ; Mathematical model ; Mobile computing ; mobile edge computing ; Model accuracy ; Policies ; Servers ; Task analysis ; user equipment</subject><ispartof>IEEE access, 2019, Vol.7, p.149623-149633</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-9de9cad92b7f104aa2a2f6aa3b32670e0de8078f7e171564688885c10c10867f3</citedby><cites>FETCH-LOGICAL-c474t-9de9cad92b7f104aa2a2f6aa3b32670e0de8078f7e171564688885c10c10867f3</cites><orcidid>0000-0002-5166-4873 ; 0000-0002-7115-6489</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8866714$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Ali, Zaiwar</creatorcontrib><creatorcontrib>Jiao, Lei</creatorcontrib><creatorcontrib>Baker, Thar</creatorcontrib><creatorcontrib>Abbas, Ghulam</creatorcontrib><creatorcontrib>Abbas, Ziaul Haq</creatorcontrib><creatorcontrib>Khaf, Sadia</creatorcontrib><title>A Deep Learning Approach for Energy Efficient Computational Offloading in Mobile Edge Computing</title><title>IEEE access</title><addtitle>Access</addtitle><description>Mobile edge computing (MEC) has shown tremendous potential as a means for computationally intensive mobile applications by partially or entirely offloading computations to a nearby server to minimize the energy consumption of user equipment (UE). However, the task of selecting an optimal set of components to offload considering the amount of data transfer as well as the latency in communication is a complex problem. In this paper, we propose a novel energy-efficient deep learning based offloading scheme (EEDOS) to train a deep learning based smart decision-making algorithm that selects an optimal set of application components based on remaining energy of UEs, energy consumption by application components, network conditions, computational load, amount of data transfer, and delays in communication. We formulate the cost function involving all aforementioned factors, obtain the cost for all possible combinations of component offloading policies, select the optimal policies over an exhaustive dataset, and train a deep learning network as an alternative for the extensive computations involved. Simulation results show that our proposed model is promising in terms of accuracy and energy consumption of UEs.</description><subject>Algorithms</subject><subject>Applications programs</subject><subject>Computation offloading</subject><subject>Computational offloading</subject><subject>Cost function</subject><subject>Data transfer (computers)</subject><subject>Decision making</subject><subject>Deep learning</subject><subject>Edge computing</subject><subject>Energy consumption</subject><subject>energy efficient offloading</subject><subject>Machine learning</subject><subject>Mathematical model</subject><subject>Mobile computing</subject><subject>mobile edge computing</subject><subject>Model accuracy</subject><subject>Policies</subject><subject>Servers</subject><subject>Task analysis</subject><subject>user equipment</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1r3DAQNaWFhjS_IBdBz7vV98dxcd02sCWHtGcxK4-2WhzLlb2H_Ptq4yV0EMzw5r0npNc094xuGaPuy65tu6enLafMbbmThirxrrnhTLuNUEK__2_-2NzN84nWshVS5qbxO_IVcSJ7hDKm8Uh201QyhD8k5kK6EcvxhXQxppBwXEibn6fzAkvKIwzkMcYhQ3-RpZH8zIc0IOn6I155dfGp-RBhmPHu2m-b39-6X-2Pzf7x-0O722-CNHLZuB5dgN7xg4mMSgAOPGoAcRBcG4q0R0uNjQaZYUpLbWupwGg9VpsobpuH1bfPcPJTSc9QXnyG5F-BXI4eypLCgJ5JTbWwAkKMUkIECkIGh85SG6UN1evz6lV_4u8Z58Wf8rnUB8-eS6U0VUrxyhIrK5Q8zwXj262M-kswfg3GX4Lx12Cq6n5VJUR8U1irtWFS_ANIuIhV</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Ali, Zaiwar</creator><creator>Jiao, Lei</creator><creator>Baker, Thar</creator><creator>Abbas, Ghulam</creator><creator>Abbas, Ziaul Haq</creator><creator>Khaf, Sadia</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5166-4873</orcidid><orcidid>https://orcid.org/0000-0002-7115-6489</orcidid></search><sort><creationdate>2019</creationdate><title>A Deep Learning Approach for Energy Efficient Computational Offloading in Mobile Edge Computing</title><author>Ali, Zaiwar ; Jiao, Lei ; Baker, Thar ; Abbas, Ghulam ; Abbas, Ziaul Haq ; Khaf, Sadia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-9de9cad92b7f104aa2a2f6aa3b32670e0de8078f7e171564688885c10c10867f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Applications programs</topic><topic>Computation offloading</topic><topic>Computational offloading</topic><topic>Cost function</topic><topic>Data transfer (computers)</topic><topic>Decision making</topic><topic>Deep learning</topic><topic>Edge computing</topic><topic>Energy consumption</topic><topic>energy efficient offloading</topic><topic>Machine learning</topic><topic>Mathematical model</topic><topic>Mobile computing</topic><topic>mobile edge computing</topic><topic>Model accuracy</topic><topic>Policies</topic><topic>Servers</topic><topic>Task analysis</topic><topic>user equipment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ali, Zaiwar</creatorcontrib><creatorcontrib>Jiao, Lei</creatorcontrib><creatorcontrib>Baker, Thar</creatorcontrib><creatorcontrib>Abbas, Ghulam</creatorcontrib><creatorcontrib>Abbas, Ziaul Haq</creatorcontrib><creatorcontrib>Khaf, Sadia</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Explore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ali, Zaiwar</au><au>Jiao, Lei</au><au>Baker, Thar</au><au>Abbas, Ghulam</au><au>Abbas, Ziaul Haq</au><au>Khaf, Sadia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Deep Learning Approach for Energy Efficient Computational Offloading in Mobile Edge Computing</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>149623</spage><epage>149633</epage><pages>149623-149633</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Mobile edge computing (MEC) has shown tremendous potential as a means for computationally intensive mobile applications by partially or entirely offloading computations to a nearby server to minimize the energy consumption of user equipment (UE). However, the task of selecting an optimal set of components to offload considering the amount of data transfer as well as the latency in communication is a complex problem. In this paper, we propose a novel energy-efficient deep learning based offloading scheme (EEDOS) to train a deep learning based smart decision-making algorithm that selects an optimal set of application components based on remaining energy of UEs, energy consumption by application components, network conditions, computational load, amount of data transfer, and delays in communication. We formulate the cost function involving all aforementioned factors, obtain the cost for all possible combinations of component offloading policies, select the optimal policies over an exhaustive dataset, and train a deep learning network as an alternative for the extensive computations involved. Simulation results show that our proposed model is promising in terms of accuracy and energy consumption of UEs.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2947053</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5166-4873</orcidid><orcidid>https://orcid.org/0000-0002-7115-6489</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.149623-149633
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2455605552
source IEEE Xplore Open Access Journals
subjects Algorithms
Applications programs
Computation offloading
Computational offloading
Cost function
Data transfer (computers)
Decision making
Deep learning
Edge computing
Energy consumption
energy efficient offloading
Machine learning
Mathematical model
Mobile computing
mobile edge computing
Model accuracy
Policies
Servers
Task analysis
user equipment
title A Deep Learning Approach for Energy Efficient Computational Offloading in Mobile Edge Computing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T16%3A32%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Deep%20Learning%20Approach%20for%20Energy%20Efficient%20Computational%20Offloading%20in%20Mobile%20Edge%20Computing&rft.jtitle=IEEE%20access&rft.au=Ali,%20Zaiwar&rft.date=2019&rft.volume=7&rft.spage=149623&rft.epage=149633&rft.pages=149623-149633&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2947053&rft_dat=%3Cproquest_cross%3E2455605552%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-9de9cad92b7f104aa2a2f6aa3b32670e0de8078f7e171564688885c10c10867f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455605552&rft_id=info:pmid/&rft_ieee_id=8866714&rfr_iscdi=true