Loading…
A Deep Learning Approach for Energy Efficient Computational Offloading in Mobile Edge Computing
Mobile edge computing (MEC) has shown tremendous potential as a means for computationally intensive mobile applications by partially or entirely offloading computations to a nearby server to minimize the energy consumption of user equipment (UE). However, the task of selecting an optimal set of comp...
Saved in:
Published in: | IEEE access 2019, Vol.7, p.149623-149633 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c474t-9de9cad92b7f104aa2a2f6aa3b32670e0de8078f7e171564688885c10c10867f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c474t-9de9cad92b7f104aa2a2f6aa3b32670e0de8078f7e171564688885c10c10867f3 |
container_end_page | 149633 |
container_issue | |
container_start_page | 149623 |
container_title | IEEE access |
container_volume | 7 |
creator | Ali, Zaiwar Jiao, Lei Baker, Thar Abbas, Ghulam Abbas, Ziaul Haq Khaf, Sadia |
description | Mobile edge computing (MEC) has shown tremendous potential as a means for computationally intensive mobile applications by partially or entirely offloading computations to a nearby server to minimize the energy consumption of user equipment (UE). However, the task of selecting an optimal set of components to offload considering the amount of data transfer as well as the latency in communication is a complex problem. In this paper, we propose a novel energy-efficient deep learning based offloading scheme (EEDOS) to train a deep learning based smart decision-making algorithm that selects an optimal set of application components based on remaining energy of UEs, energy consumption by application components, network conditions, computational load, amount of data transfer, and delays in communication. We formulate the cost function involving all aforementioned factors, obtain the cost for all possible combinations of component offloading policies, select the optimal policies over an exhaustive dataset, and train a deep learning network as an alternative for the extensive computations involved. Simulation results show that our proposed model is promising in terms of accuracy and energy consumption of UEs. |
doi_str_mv | 10.1109/ACCESS.2019.2947053 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2455605552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8866714</ieee_id><doaj_id>oai_doaj_org_article_14606383acff44afa0a34c9e9808f48c</doaj_id><sourcerecordid>2455605552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-9de9cad92b7f104aa2a2f6aa3b32670e0de8078f7e171564688885c10c10867f3</originalsourceid><addsrcrecordid>eNpNUU1r3DAQNaWFhjS_IBdBz7vV98dxcd02sCWHtGcxK4-2WhzLlb2H_Ptq4yV0EMzw5r0npNc094xuGaPuy65tu6enLafMbbmThirxrrnhTLuNUEK__2_-2NzN84nWshVS5qbxO_IVcSJ7hDKm8Uh201QyhD8k5kK6EcvxhXQxppBwXEibn6fzAkvKIwzkMcYhQ3-RpZH8zIc0IOn6I155dfGp-RBhmPHu2m-b39-6X-2Pzf7x-0O722-CNHLZuB5dgN7xg4mMSgAOPGoAcRBcG4q0R0uNjQaZYUpLbWupwGg9VpsobpuH1bfPcPJTSc9QXnyG5F-BXI4eypLCgJ5JTbWwAkKMUkIECkIGh85SG6UN1evz6lV_4u8Z58Wf8rnUB8-eS6U0VUrxyhIrK5Q8zwXj262M-kswfg3GX4Lx12Cq6n5VJUR8U1irtWFS_ANIuIhV</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455605552</pqid></control><display><type>article</type><title>A Deep Learning Approach for Energy Efficient Computational Offloading in Mobile Edge Computing</title><source>IEEE Xplore Open Access Journals</source><creator>Ali, Zaiwar ; Jiao, Lei ; Baker, Thar ; Abbas, Ghulam ; Abbas, Ziaul Haq ; Khaf, Sadia</creator><creatorcontrib>Ali, Zaiwar ; Jiao, Lei ; Baker, Thar ; Abbas, Ghulam ; Abbas, Ziaul Haq ; Khaf, Sadia</creatorcontrib><description>Mobile edge computing (MEC) has shown tremendous potential as a means for computationally intensive mobile applications by partially or entirely offloading computations to a nearby server to minimize the energy consumption of user equipment (UE). However, the task of selecting an optimal set of components to offload considering the amount of data transfer as well as the latency in communication is a complex problem. In this paper, we propose a novel energy-efficient deep learning based offloading scheme (EEDOS) to train a deep learning based smart decision-making algorithm that selects an optimal set of application components based on remaining energy of UEs, energy consumption by application components, network conditions, computational load, amount of data transfer, and delays in communication. We formulate the cost function involving all aforementioned factors, obtain the cost for all possible combinations of component offloading policies, select the optimal policies over an exhaustive dataset, and train a deep learning network as an alternative for the extensive computations involved. Simulation results show that our proposed model is promising in terms of accuracy and energy consumption of UEs.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2947053</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Applications programs ; Computation offloading ; Computational offloading ; Cost function ; Data transfer (computers) ; Decision making ; Deep learning ; Edge computing ; Energy consumption ; energy efficient offloading ; Machine learning ; Mathematical model ; Mobile computing ; mobile edge computing ; Model accuracy ; Policies ; Servers ; Task analysis ; user equipment</subject><ispartof>IEEE access, 2019, Vol.7, p.149623-149633</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-9de9cad92b7f104aa2a2f6aa3b32670e0de8078f7e171564688885c10c10867f3</citedby><cites>FETCH-LOGICAL-c474t-9de9cad92b7f104aa2a2f6aa3b32670e0de8078f7e171564688885c10c10867f3</cites><orcidid>0000-0002-5166-4873 ; 0000-0002-7115-6489</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8866714$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Ali, Zaiwar</creatorcontrib><creatorcontrib>Jiao, Lei</creatorcontrib><creatorcontrib>Baker, Thar</creatorcontrib><creatorcontrib>Abbas, Ghulam</creatorcontrib><creatorcontrib>Abbas, Ziaul Haq</creatorcontrib><creatorcontrib>Khaf, Sadia</creatorcontrib><title>A Deep Learning Approach for Energy Efficient Computational Offloading in Mobile Edge Computing</title><title>IEEE access</title><addtitle>Access</addtitle><description>Mobile edge computing (MEC) has shown tremendous potential as a means for computationally intensive mobile applications by partially or entirely offloading computations to a nearby server to minimize the energy consumption of user equipment (UE). However, the task of selecting an optimal set of components to offload considering the amount of data transfer as well as the latency in communication is a complex problem. In this paper, we propose a novel energy-efficient deep learning based offloading scheme (EEDOS) to train a deep learning based smart decision-making algorithm that selects an optimal set of application components based on remaining energy of UEs, energy consumption by application components, network conditions, computational load, amount of data transfer, and delays in communication. We formulate the cost function involving all aforementioned factors, obtain the cost for all possible combinations of component offloading policies, select the optimal policies over an exhaustive dataset, and train a deep learning network as an alternative for the extensive computations involved. Simulation results show that our proposed model is promising in terms of accuracy and energy consumption of UEs.</description><subject>Algorithms</subject><subject>Applications programs</subject><subject>Computation offloading</subject><subject>Computational offloading</subject><subject>Cost function</subject><subject>Data transfer (computers)</subject><subject>Decision making</subject><subject>Deep learning</subject><subject>Edge computing</subject><subject>Energy consumption</subject><subject>energy efficient offloading</subject><subject>Machine learning</subject><subject>Mathematical model</subject><subject>Mobile computing</subject><subject>mobile edge computing</subject><subject>Model accuracy</subject><subject>Policies</subject><subject>Servers</subject><subject>Task analysis</subject><subject>user equipment</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1r3DAQNaWFhjS_IBdBz7vV98dxcd02sCWHtGcxK4-2WhzLlb2H_Ptq4yV0EMzw5r0npNc094xuGaPuy65tu6enLafMbbmThirxrrnhTLuNUEK__2_-2NzN84nWshVS5qbxO_IVcSJ7hDKm8Uh201QyhD8k5kK6EcvxhXQxppBwXEibn6fzAkvKIwzkMcYhQ3-RpZH8zIc0IOn6I155dfGp-RBhmPHu2m-b39-6X-2Pzf7x-0O722-CNHLZuB5dgN7xg4mMSgAOPGoAcRBcG4q0R0uNjQaZYUpLbWupwGg9VpsobpuH1bfPcPJTSc9QXnyG5F-BXI4eypLCgJ5JTbWwAkKMUkIECkIGh85SG6UN1evz6lV_4u8Z58Wf8rnUB8-eS6U0VUrxyhIrK5Q8zwXj262M-kswfg3GX4Lx12Cq6n5VJUR8U1irtWFS_ANIuIhV</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Ali, Zaiwar</creator><creator>Jiao, Lei</creator><creator>Baker, Thar</creator><creator>Abbas, Ghulam</creator><creator>Abbas, Ziaul Haq</creator><creator>Khaf, Sadia</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5166-4873</orcidid><orcidid>https://orcid.org/0000-0002-7115-6489</orcidid></search><sort><creationdate>2019</creationdate><title>A Deep Learning Approach for Energy Efficient Computational Offloading in Mobile Edge Computing</title><author>Ali, Zaiwar ; Jiao, Lei ; Baker, Thar ; Abbas, Ghulam ; Abbas, Ziaul Haq ; Khaf, Sadia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-9de9cad92b7f104aa2a2f6aa3b32670e0de8078f7e171564688885c10c10867f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Applications programs</topic><topic>Computation offloading</topic><topic>Computational offloading</topic><topic>Cost function</topic><topic>Data transfer (computers)</topic><topic>Decision making</topic><topic>Deep learning</topic><topic>Edge computing</topic><topic>Energy consumption</topic><topic>energy efficient offloading</topic><topic>Machine learning</topic><topic>Mathematical model</topic><topic>Mobile computing</topic><topic>mobile edge computing</topic><topic>Model accuracy</topic><topic>Policies</topic><topic>Servers</topic><topic>Task analysis</topic><topic>user equipment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ali, Zaiwar</creatorcontrib><creatorcontrib>Jiao, Lei</creatorcontrib><creatorcontrib>Baker, Thar</creatorcontrib><creatorcontrib>Abbas, Ghulam</creatorcontrib><creatorcontrib>Abbas, Ziaul Haq</creatorcontrib><creatorcontrib>Khaf, Sadia</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Explore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ali, Zaiwar</au><au>Jiao, Lei</au><au>Baker, Thar</au><au>Abbas, Ghulam</au><au>Abbas, Ziaul Haq</au><au>Khaf, Sadia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Deep Learning Approach for Energy Efficient Computational Offloading in Mobile Edge Computing</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>149623</spage><epage>149633</epage><pages>149623-149633</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Mobile edge computing (MEC) has shown tremendous potential as a means for computationally intensive mobile applications by partially or entirely offloading computations to a nearby server to minimize the energy consumption of user equipment (UE). However, the task of selecting an optimal set of components to offload considering the amount of data transfer as well as the latency in communication is a complex problem. In this paper, we propose a novel energy-efficient deep learning based offloading scheme (EEDOS) to train a deep learning based smart decision-making algorithm that selects an optimal set of application components based on remaining energy of UEs, energy consumption by application components, network conditions, computational load, amount of data transfer, and delays in communication. We formulate the cost function involving all aforementioned factors, obtain the cost for all possible combinations of component offloading policies, select the optimal policies over an exhaustive dataset, and train a deep learning network as an alternative for the extensive computations involved. Simulation results show that our proposed model is promising in terms of accuracy and energy consumption of UEs.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2947053</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5166-4873</orcidid><orcidid>https://orcid.org/0000-0002-7115-6489</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.149623-149633 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2455605552 |
source | IEEE Xplore Open Access Journals |
subjects | Algorithms Applications programs Computation offloading Computational offloading Cost function Data transfer (computers) Decision making Deep learning Edge computing Energy consumption energy efficient offloading Machine learning Mathematical model Mobile computing mobile edge computing Model accuracy Policies Servers Task analysis user equipment |
title | A Deep Learning Approach for Energy Efficient Computational Offloading in Mobile Edge Computing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T16%3A32%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Deep%20Learning%20Approach%20for%20Energy%20Efficient%20Computational%20Offloading%20in%20Mobile%20Edge%20Computing&rft.jtitle=IEEE%20access&rft.au=Ali,%20Zaiwar&rft.date=2019&rft.volume=7&rft.spage=149623&rft.epage=149633&rft.pages=149623-149633&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2947053&rft_dat=%3Cproquest_cross%3E2455605552%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-9de9cad92b7f104aa2a2f6aa3b32670e0de8078f7e171564688885c10c10867f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455605552&rft_id=info:pmid/&rft_ieee_id=8866714&rfr_iscdi=true |