Loading…
Facial Action Units for Training Convolutional Neural Networks
This paper deals with the problem of training convolutional neural networks (CNNs) with facial action units (AUs). In particular, we focus on the imbalance problem of the training datasets for facial emotion classification. Since training a CNN with an imbalanced dataset tends to yield a learning bi...
Saved in:
Published in: | IEEE access 2019, Vol.7, p.77816-77824 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-deef84135d739f24a162530fc0913c581d4cf0c647968c7d816d11d107f7155b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-deef84135d739f24a162530fc0913c581d4cf0c647968c7d816d11d107f7155b3 |
container_end_page | 77824 |
container_issue | |
container_start_page | 77816 |
container_title | IEEE access |
container_volume | 7 |
creator | Pham, Trinh Thi Doan Won, Chee Sun |
description | This paper deals with the problem of training convolutional neural networks (CNNs) with facial action units (AUs). In particular, we focus on the imbalance problem of the training datasets for facial emotion classification. Since training a CNN with an imbalanced dataset tends to yield a learning bias toward the major classes and eventually leads to deterioration in the classification accuracy, it is required to increase the number of training images for the minority classes to have evenly distributed training images over all classes. However, it is difficult to find the images with a similar facial emotion for the oversampling. In this paper, we propose to use the AU features to retrieve an image with a similar emotion. The query selection from the minority class and the AU-based retrieval processes repeat until the numbers of training data over all classes are balanced. Also, to improve the classification accuracy, the AU features are fused with the CNN features to train a support vector machine (SVM) for final classification. The experiments have been conducted on three imbalanced facial image datasets, RAF-DB, FER2013, and ExpW. The results demonstrate that the CNNs trained with the AU features improve the classification accuracy by 3%-4%. |
doi_str_mv | 10.1109/ACCESS.2019.2921241 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2455605975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8732356</ieee_id><doaj_id>oai_doaj_org_article_c18861fb93c344c5baf4992dcaf77f42</doaj_id><sourcerecordid>2455605975</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-deef84135d739f24a162530fc0913c581d4cf0c647968c7d816d11d107f7155b3</originalsourceid><addsrcrecordid>eNpNUE1vwjAMraZNGmL8Ai6Vdi6L89E0l0mogg0JbQfgHIU0QWFdw5Kyaf9-hSI0X2zZ7z3bL0nGgCYASDxNy3K2Wk0wAjHBAgOmcJMMMOQiI4zkt__q-2QU4x51UXQtxgfJ81xpp-p0qlvnm3TTuDam1od0HZRrXLNLS998-_p4Gne4N3MM59T--PARH5I7q-poRpc8TDbz2bp8zZbvL4tyusw0RUWbVcbYggJhFSfCYqogx4wgq5EAolkBFdUW6ZxykReaV911FUAFiFsOjG3JMFn0upVXe3kI7lOFX-mVk-eGDzupQut0baSGosjBbgXRhFLNtspSIXClleXcUtxpPfZah-C_jia2cu-PoXsuSkwZyxETnHUo0qN08DEGY69bAcmT77L3XZ58lxffO9a4ZzljzJVRcIIJy8kfHDt8sA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455605975</pqid></control><display><type>article</type><title>Facial Action Units for Training Convolutional Neural Networks</title><source>IEEE Open Access Journals</source><creator>Pham, Trinh Thi Doan ; Won, Chee Sun</creator><creatorcontrib>Pham, Trinh Thi Doan ; Won, Chee Sun</creatorcontrib><description>This paper deals with the problem of training convolutional neural networks (CNNs) with facial action units (AUs). In particular, we focus on the imbalance problem of the training datasets for facial emotion classification. Since training a CNN with an imbalanced dataset tends to yield a learning bias toward the major classes and eventually leads to deterioration in the classification accuracy, it is required to increase the number of training images for the minority classes to have evenly distributed training images over all classes. However, it is difficult to find the images with a similar facial emotion for the oversampling. In this paper, we propose to use the AU features to retrieve an image with a similar emotion. The query selection from the minority class and the AU-based retrieval processes repeat until the numbers of training data over all classes are balanced. Also, to improve the classification accuracy, the AU features are fused with the CNN features to train a support vector machine (SVM) for final classification. The experiments have been conducted on three imbalanced facial image datasets, RAF-DB, FER2013, and ExpW. The results demonstrate that the CNNs trained with the AU features improve the classification accuracy by 3%-4%.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2921241</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Artificial neural networks ; Classification ; Convolutional neural network ; Convolutional neural networks ; data imbalance ; data oversampling ; Datasets ; Emotions ; Face ; facial action units ; facial emotion recognition ; Gold ; Image classification ; Image retrieval ; Neural networks ; Oversampling ; Support vector machines ; Training ; Training data</subject><ispartof>IEEE access, 2019, Vol.7, p.77816-77824</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-deef84135d739f24a162530fc0913c581d4cf0c647968c7d816d11d107f7155b3</citedby><cites>FETCH-LOGICAL-c408t-deef84135d739f24a162530fc0913c581d4cf0c647968c7d816d11d107f7155b3</cites><orcidid>0000-0002-3400-0792</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8732356$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Pham, Trinh Thi Doan</creatorcontrib><creatorcontrib>Won, Chee Sun</creatorcontrib><title>Facial Action Units for Training Convolutional Neural Networks</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper deals with the problem of training convolutional neural networks (CNNs) with facial action units (AUs). In particular, we focus on the imbalance problem of the training datasets for facial emotion classification. Since training a CNN with an imbalanced dataset tends to yield a learning bias toward the major classes and eventually leads to deterioration in the classification accuracy, it is required to increase the number of training images for the minority classes to have evenly distributed training images over all classes. However, it is difficult to find the images with a similar facial emotion for the oversampling. In this paper, we propose to use the AU features to retrieve an image with a similar emotion. The query selection from the minority class and the AU-based retrieval processes repeat until the numbers of training data over all classes are balanced. Also, to improve the classification accuracy, the AU features are fused with the CNN features to train a support vector machine (SVM) for final classification. The experiments have been conducted on three imbalanced facial image datasets, RAF-DB, FER2013, and ExpW. The results demonstrate that the CNNs trained with the AU features improve the classification accuracy by 3%-4%.</description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Convolutional neural network</subject><subject>Convolutional neural networks</subject><subject>data imbalance</subject><subject>data oversampling</subject><subject>Datasets</subject><subject>Emotions</subject><subject>Face</subject><subject>facial action units</subject><subject>facial emotion recognition</subject><subject>Gold</subject><subject>Image classification</subject><subject>Image retrieval</subject><subject>Neural networks</subject><subject>Oversampling</subject><subject>Support vector machines</subject><subject>Training</subject><subject>Training data</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1vwjAMraZNGmL8Ai6Vdi6L89E0l0mogg0JbQfgHIU0QWFdw5Kyaf9-hSI0X2zZ7z3bL0nGgCYASDxNy3K2Wk0wAjHBAgOmcJMMMOQiI4zkt__q-2QU4x51UXQtxgfJ81xpp-p0qlvnm3TTuDam1od0HZRrXLNLS998-_p4Gne4N3MM59T--PARH5I7q-poRpc8TDbz2bp8zZbvL4tyusw0RUWbVcbYggJhFSfCYqogx4wgq5EAolkBFdUW6ZxykReaV911FUAFiFsOjG3JMFn0upVXe3kI7lOFX-mVk-eGDzupQut0baSGosjBbgXRhFLNtspSIXClleXcUtxpPfZah-C_jia2cu-PoXsuSkwZyxETnHUo0qN08DEGY69bAcmT77L3XZ58lxffO9a4ZzljzJVRcIIJy8kfHDt8sA</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Pham, Trinh Thi Doan</creator><creator>Won, Chee Sun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3400-0792</orcidid></search><sort><creationdate>2019</creationdate><title>Facial Action Units for Training Convolutional Neural Networks</title><author>Pham, Trinh Thi Doan ; Won, Chee Sun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-deef84135d739f24a162530fc0913c581d4cf0c647968c7d816d11d107f7155b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Convolutional neural network</topic><topic>Convolutional neural networks</topic><topic>data imbalance</topic><topic>data oversampling</topic><topic>Datasets</topic><topic>Emotions</topic><topic>Face</topic><topic>facial action units</topic><topic>facial emotion recognition</topic><topic>Gold</topic><topic>Image classification</topic><topic>Image retrieval</topic><topic>Neural networks</topic><topic>Oversampling</topic><topic>Support vector machines</topic><topic>Training</topic><topic>Training data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pham, Trinh Thi Doan</creatorcontrib><creatorcontrib>Won, Chee Sun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pham, Trinh Thi Doan</au><au>Won, Chee Sun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Facial Action Units for Training Convolutional Neural Networks</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>77816</spage><epage>77824</epage><pages>77816-77824</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper deals with the problem of training convolutional neural networks (CNNs) with facial action units (AUs). In particular, we focus on the imbalance problem of the training datasets for facial emotion classification. Since training a CNN with an imbalanced dataset tends to yield a learning bias toward the major classes and eventually leads to deterioration in the classification accuracy, it is required to increase the number of training images for the minority classes to have evenly distributed training images over all classes. However, it is difficult to find the images with a similar facial emotion for the oversampling. In this paper, we propose to use the AU features to retrieve an image with a similar emotion. The query selection from the minority class and the AU-based retrieval processes repeat until the numbers of training data over all classes are balanced. Also, to improve the classification accuracy, the AU features are fused with the CNN features to train a support vector machine (SVM) for final classification. The experiments have been conducted on three imbalanced facial image datasets, RAF-DB, FER2013, and ExpW. The results demonstrate that the CNNs trained with the AU features improve the classification accuracy by 3%-4%.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2921241</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3400-0792</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.77816-77824 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2455605975 |
source | IEEE Open Access Journals |
subjects | Accuracy Artificial neural networks Classification Convolutional neural network Convolutional neural networks data imbalance data oversampling Datasets Emotions Face facial action units facial emotion recognition Gold Image classification Image retrieval Neural networks Oversampling Support vector machines Training Training data |
title | Facial Action Units for Training Convolutional Neural Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A30%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Facial%20Action%20Units%20for%20Training%20Convolutional%20Neural%20Networks&rft.jtitle=IEEE%20access&rft.au=Pham,%20Trinh%20Thi%20Doan&rft.date=2019&rft.volume=7&rft.spage=77816&rft.epage=77824&rft.pages=77816-77824&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2921241&rft_dat=%3Cproquest_cross%3E2455605975%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-deef84135d739f24a162530fc0913c581d4cf0c647968c7d816d11d107f7155b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455605975&rft_id=info:pmid/&rft_ieee_id=8732356&rfr_iscdi=true |