Loading…

Facial Action Units for Training Convolutional Neural Networks

This paper deals with the problem of training convolutional neural networks (CNNs) with facial action units (AUs). In particular, we focus on the imbalance problem of the training datasets for facial emotion classification. Since training a CNN with an imbalanced dataset tends to yield a learning bi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2019, Vol.7, p.77816-77824
Main Authors: Pham, Trinh Thi Doan, Won, Chee Sun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-deef84135d739f24a162530fc0913c581d4cf0c647968c7d816d11d107f7155b3
cites cdi_FETCH-LOGICAL-c408t-deef84135d739f24a162530fc0913c581d4cf0c647968c7d816d11d107f7155b3
container_end_page 77824
container_issue
container_start_page 77816
container_title IEEE access
container_volume 7
creator Pham, Trinh Thi Doan
Won, Chee Sun
description This paper deals with the problem of training convolutional neural networks (CNNs) with facial action units (AUs). In particular, we focus on the imbalance problem of the training datasets for facial emotion classification. Since training a CNN with an imbalanced dataset tends to yield a learning bias toward the major classes and eventually leads to deterioration in the classification accuracy, it is required to increase the number of training images for the minority classes to have evenly distributed training images over all classes. However, it is difficult to find the images with a similar facial emotion for the oversampling. In this paper, we propose to use the AU features to retrieve an image with a similar emotion. The query selection from the minority class and the AU-based retrieval processes repeat until the numbers of training data over all classes are balanced. Also, to improve the classification accuracy, the AU features are fused with the CNN features to train a support vector machine (SVM) for final classification. The experiments have been conducted on three imbalanced facial image datasets, RAF-DB, FER2013, and ExpW. The results demonstrate that the CNNs trained with the AU features improve the classification accuracy by 3%-4%.
doi_str_mv 10.1109/ACCESS.2019.2921241
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2455605975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8732356</ieee_id><doaj_id>oai_doaj_org_article_c18861fb93c344c5baf4992dcaf77f42</doaj_id><sourcerecordid>2455605975</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-deef84135d739f24a162530fc0913c581d4cf0c647968c7d816d11d107f7155b3</originalsourceid><addsrcrecordid>eNpNUE1vwjAMraZNGmL8Ai6Vdi6L89E0l0mogg0JbQfgHIU0QWFdw5Kyaf9-hSI0X2zZ7z3bL0nGgCYASDxNy3K2Wk0wAjHBAgOmcJMMMOQiI4zkt__q-2QU4x51UXQtxgfJ81xpp-p0qlvnm3TTuDam1od0HZRrXLNLS998-_p4Gne4N3MM59T--PARH5I7q-poRpc8TDbz2bp8zZbvL4tyusw0RUWbVcbYggJhFSfCYqogx4wgq5EAolkBFdUW6ZxykReaV911FUAFiFsOjG3JMFn0upVXe3kI7lOFX-mVk-eGDzupQut0baSGosjBbgXRhFLNtspSIXClleXcUtxpPfZah-C_jia2cu-PoXsuSkwZyxETnHUo0qN08DEGY69bAcmT77L3XZ58lxffO9a4ZzljzJVRcIIJy8kfHDt8sA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455605975</pqid></control><display><type>article</type><title>Facial Action Units for Training Convolutional Neural Networks</title><source>IEEE Open Access Journals</source><creator>Pham, Trinh Thi Doan ; Won, Chee Sun</creator><creatorcontrib>Pham, Trinh Thi Doan ; Won, Chee Sun</creatorcontrib><description>This paper deals with the problem of training convolutional neural networks (CNNs) with facial action units (AUs). In particular, we focus on the imbalance problem of the training datasets for facial emotion classification. Since training a CNN with an imbalanced dataset tends to yield a learning bias toward the major classes and eventually leads to deterioration in the classification accuracy, it is required to increase the number of training images for the minority classes to have evenly distributed training images over all classes. However, it is difficult to find the images with a similar facial emotion for the oversampling. In this paper, we propose to use the AU features to retrieve an image with a similar emotion. The query selection from the minority class and the AU-based retrieval processes repeat until the numbers of training data over all classes are balanced. Also, to improve the classification accuracy, the AU features are fused with the CNN features to train a support vector machine (SVM) for final classification. The experiments have been conducted on three imbalanced facial image datasets, RAF-DB, FER2013, and ExpW. The results demonstrate that the CNNs trained with the AU features improve the classification accuracy by 3%-4%.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2921241</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Artificial neural networks ; Classification ; Convolutional neural network ; Convolutional neural networks ; data imbalance ; data oversampling ; Datasets ; Emotions ; Face ; facial action units ; facial emotion recognition ; Gold ; Image classification ; Image retrieval ; Neural networks ; Oversampling ; Support vector machines ; Training ; Training data</subject><ispartof>IEEE access, 2019, Vol.7, p.77816-77824</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-deef84135d739f24a162530fc0913c581d4cf0c647968c7d816d11d107f7155b3</citedby><cites>FETCH-LOGICAL-c408t-deef84135d739f24a162530fc0913c581d4cf0c647968c7d816d11d107f7155b3</cites><orcidid>0000-0002-3400-0792</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8732356$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Pham, Trinh Thi Doan</creatorcontrib><creatorcontrib>Won, Chee Sun</creatorcontrib><title>Facial Action Units for Training Convolutional Neural Networks</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper deals with the problem of training convolutional neural networks (CNNs) with facial action units (AUs). In particular, we focus on the imbalance problem of the training datasets for facial emotion classification. Since training a CNN with an imbalanced dataset tends to yield a learning bias toward the major classes and eventually leads to deterioration in the classification accuracy, it is required to increase the number of training images for the minority classes to have evenly distributed training images over all classes. However, it is difficult to find the images with a similar facial emotion for the oversampling. In this paper, we propose to use the AU features to retrieve an image with a similar emotion. The query selection from the minority class and the AU-based retrieval processes repeat until the numbers of training data over all classes are balanced. Also, to improve the classification accuracy, the AU features are fused with the CNN features to train a support vector machine (SVM) for final classification. The experiments have been conducted on three imbalanced facial image datasets, RAF-DB, FER2013, and ExpW. The results demonstrate that the CNNs trained with the AU features improve the classification accuracy by 3%-4%.</description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Convolutional neural network</subject><subject>Convolutional neural networks</subject><subject>data imbalance</subject><subject>data oversampling</subject><subject>Datasets</subject><subject>Emotions</subject><subject>Face</subject><subject>facial action units</subject><subject>facial emotion recognition</subject><subject>Gold</subject><subject>Image classification</subject><subject>Image retrieval</subject><subject>Neural networks</subject><subject>Oversampling</subject><subject>Support vector machines</subject><subject>Training</subject><subject>Training data</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1vwjAMraZNGmL8Ai6Vdi6L89E0l0mogg0JbQfgHIU0QWFdw5Kyaf9-hSI0X2zZ7z3bL0nGgCYASDxNy3K2Wk0wAjHBAgOmcJMMMOQiI4zkt__q-2QU4x51UXQtxgfJ81xpp-p0qlvnm3TTuDam1od0HZRrXLNLS998-_p4Gne4N3MM59T--PARH5I7q-poRpc8TDbz2bp8zZbvL4tyusw0RUWbVcbYggJhFSfCYqogx4wgq5EAolkBFdUW6ZxykReaV911FUAFiFsOjG3JMFn0upVXe3kI7lOFX-mVk-eGDzupQut0baSGosjBbgXRhFLNtspSIXClleXcUtxpPfZah-C_jia2cu-PoXsuSkwZyxETnHUo0qN08DEGY69bAcmT77L3XZ58lxffO9a4ZzljzJVRcIIJy8kfHDt8sA</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Pham, Trinh Thi Doan</creator><creator>Won, Chee Sun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3400-0792</orcidid></search><sort><creationdate>2019</creationdate><title>Facial Action Units for Training Convolutional Neural Networks</title><author>Pham, Trinh Thi Doan ; Won, Chee Sun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-deef84135d739f24a162530fc0913c581d4cf0c647968c7d816d11d107f7155b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Convolutional neural network</topic><topic>Convolutional neural networks</topic><topic>data imbalance</topic><topic>data oversampling</topic><topic>Datasets</topic><topic>Emotions</topic><topic>Face</topic><topic>facial action units</topic><topic>facial emotion recognition</topic><topic>Gold</topic><topic>Image classification</topic><topic>Image retrieval</topic><topic>Neural networks</topic><topic>Oversampling</topic><topic>Support vector machines</topic><topic>Training</topic><topic>Training data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pham, Trinh Thi Doan</creatorcontrib><creatorcontrib>Won, Chee Sun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pham, Trinh Thi Doan</au><au>Won, Chee Sun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Facial Action Units for Training Convolutional Neural Networks</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>77816</spage><epage>77824</epage><pages>77816-77824</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper deals with the problem of training convolutional neural networks (CNNs) with facial action units (AUs). In particular, we focus on the imbalance problem of the training datasets for facial emotion classification. Since training a CNN with an imbalanced dataset tends to yield a learning bias toward the major classes and eventually leads to deterioration in the classification accuracy, it is required to increase the number of training images for the minority classes to have evenly distributed training images over all classes. However, it is difficult to find the images with a similar facial emotion for the oversampling. In this paper, we propose to use the AU features to retrieve an image with a similar emotion. The query selection from the minority class and the AU-based retrieval processes repeat until the numbers of training data over all classes are balanced. Also, to improve the classification accuracy, the AU features are fused with the CNN features to train a support vector machine (SVM) for final classification. The experiments have been conducted on three imbalanced facial image datasets, RAF-DB, FER2013, and ExpW. The results demonstrate that the CNNs trained with the AU features improve the classification accuracy by 3%-4%.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2921241</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3400-0792</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.77816-77824
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2455605975
source IEEE Open Access Journals
subjects Accuracy
Artificial neural networks
Classification
Convolutional neural network
Convolutional neural networks
data imbalance
data oversampling
Datasets
Emotions
Face
facial action units
facial emotion recognition
Gold
Image classification
Image retrieval
Neural networks
Oversampling
Support vector machines
Training
Training data
title Facial Action Units for Training Convolutional Neural Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A30%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Facial%20Action%20Units%20for%20Training%20Convolutional%20Neural%20Networks&rft.jtitle=IEEE%20access&rft.au=Pham,%20Trinh%20Thi%20Doan&rft.date=2019&rft.volume=7&rft.spage=77816&rft.epage=77824&rft.pages=77816-77824&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2921241&rft_dat=%3Cproquest_cross%3E2455605975%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-deef84135d739f24a162530fc0913c581d4cf0c647968c7d816d11d107f7155b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455605975&rft_id=info:pmid/&rft_ieee_id=8732356&rfr_iscdi=true