Loading…
ECG-Based Advanced Personal Identification Study With Adjusted (Qi Si)
Although many security systems with biometric information have appeared, they only have been used the static bio-information, e.g., a fingerprint, ris, and so on. However, because these values are permanent, the attackers can modify and abuse that. To overcome this problem, many researchers would li...
Saved in:
Published in: | IEEE access 2019, Vol.7, p.40078-40084 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3235-2609d732b912eb9676fba7bb66eb461ecdead3d453e2d6a3d9811843fe1f71c53 |
---|---|
cites | cdi_FETCH-LOGICAL-c3235-2609d732b912eb9676fba7bb66eb461ecdead3d453e2d6a3d9811843fe1f71c53 |
container_end_page | 40084 |
container_issue | |
container_start_page | 40078 |
container_title | IEEE access |
container_volume | 7 |
creator | Ko, Hoon Ogiela, Marek R. Ogiela, Lidia Mesicek, Libor Lee, Myoungwon Choi, Junho Kim, Pankoo |
description | Although many security systems with biometric information have appeared, they only have been used the static bio-information, e.g., a fingerprint, ris, and so on. However, because these values are permanent, the attackers can modify and abuse that. To overcome this problem, many researchers would like to use dynamic bio-information, e.g., electrocardiograms (ECG), in security systems. In this case, a sensor in the system must measure the dynamic bio-information instead. The difficulty is that usually, the measured data is different whenever it measures. Therefore if the data is applied to existing algorithms, the results will not be matched and the user will be rejected to pass. This is because an unstable base point, which are Q and S values in the ECG, is used to calculate. To solve this, it suggests an adjusted (Q i * S i ) algorithm that defines a specific distance from the location of R-peak to obtain the Q i and S i values. The algorithm can use balanced input data to determine the features, thereby enabling a highly accurate dynamic biometric system. |
doi_str_mv | 10.1109/ACCESS.2019.2903575 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2455630253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8664673</ieee_id><doaj_id>oai_doaj_org_article_c1ab2f71aaf04c2a999ad99d6840bab6</doaj_id><sourcerecordid>2455630253</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3235-2609d732b912eb9676fba7bb66eb461ecdead3d453e2d6a3d9811843fe1f71c53</originalsourceid><addsrcrecordid>eNpNUE1Lw0AUDKJgqf0FvQS86CF1P7Kb7LGGthYKKlU8Lm8_oltqU3cTof_erSniu7xhmJnHmyQZYzTBGIm7aVXN1usJQVhMiECUFewsGRDMRUYZ5ef_8GUyCmGD4pSRYsUgmc-qRXYPwZp0ar5hpyN4sj40O9imS2N3raudhtY1u3TdduaQvrn2I2o3XWij9ubZpWt3e5Vc1LANdnTaw-R1PnupHrLV42JZTVeZpoSyjHAkTEGJEphYJXjBawWFUpxblXNstbFgqMkZtcRwoEaUGJc5rS2uC6wZHSbLPtc0sJF77z7BH2QDTv4SjX-X4Funt1ZqDIpEF0CNck1ACAFGCMPLHClQPGZd91l733x1NrRy03Q-_h0kyRnjFBFGo4r2Ku2bELyt_65iJI_9y75_eexfnvqPrnHvctbaP0fJec4LSn8Apal_Og</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455630253</pqid></control><display><type>article</type><title>ECG-Based Advanced Personal Identification Study With Adjusted (Qi Si)</title><source>IEEE Xplore Open Access Journals</source><creator>Ko, Hoon ; Ogiela, Marek R. ; Ogiela, Lidia ; Mesicek, Libor ; Lee, Myoungwon ; Choi, Junho ; Kim, Pankoo</creator><creatorcontrib>Ko, Hoon ; Ogiela, Marek R. ; Ogiela, Lidia ; Mesicek, Libor ; Lee, Myoungwon ; Choi, Junho ; Kim, Pankoo</creatorcontrib><description>Although many security systems with biometric information have appeared, they only have been used the static bio-information, e.g., a fingerprint, ris, and so on. However, because these values are permanent, the attackers can modify and abuse that. To overcome this problem, many researchers would like to use dynamic bio-information, e.g., electrocardiograms (ECG), in security systems. In this case, a sensor in the system must measure the dynamic bio-information instead. The difficulty is that usually, the measured data is different whenever it measures. Therefore if the data is applied to existing algorithms, the results will not be matched and the user will be rejected to pass. This is because an unstable base point, which are Q and S values in the ECG, is used to calculate. To solve this, it suggests an adjusted (Q i * S i ) algorithm that defines a specific distance from the location of R-peak to obtain the Q i and S i values. The algorithm can use balanced input data to determine the features, thereby enabling a highly accurate dynamic biometric system.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2903575</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adjusted (Q<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">ᵢ S<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">ᵢ ) ; Algorithms ; Biometrics ; electrocardiogram (ECG) ; Electrocardiography ; Feature extraction ; Heuristic algorithms ; personal identification ; QRS complex ; Security ; Security systems ; Silicon ; Time-domain analysis ; Training</subject><ispartof>IEEE access, 2019, Vol.7, p.40078-40084</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3235-2609d732b912eb9676fba7bb66eb461ecdead3d453e2d6a3d9811843fe1f71c53</citedby><cites>FETCH-LOGICAL-c3235-2609d732b912eb9676fba7bb66eb461ecdead3d453e2d6a3d9811843fe1f71c53</cites><orcidid>0000-0002-4604-1735 ; 0000-0003-0111-5152</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8664673$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4009,27612,27902,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Ko, Hoon</creatorcontrib><creatorcontrib>Ogiela, Marek R.</creatorcontrib><creatorcontrib>Ogiela, Lidia</creatorcontrib><creatorcontrib>Mesicek, Libor</creatorcontrib><creatorcontrib>Lee, Myoungwon</creatorcontrib><creatorcontrib>Choi, Junho</creatorcontrib><creatorcontrib>Kim, Pankoo</creatorcontrib><title>ECG-Based Advanced Personal Identification Study With Adjusted (Qi Si)</title><title>IEEE access</title><addtitle>Access</addtitle><description>Although many security systems with biometric information have appeared, they only have been used the static bio-information, e.g., a fingerprint, ris, and so on. However, because these values are permanent, the attackers can modify and abuse that. To overcome this problem, many researchers would like to use dynamic bio-information, e.g., electrocardiograms (ECG), in security systems. In this case, a sensor in the system must measure the dynamic bio-information instead. The difficulty is that usually, the measured data is different whenever it measures. Therefore if the data is applied to existing algorithms, the results will not be matched and the user will be rejected to pass. This is because an unstable base point, which are Q and S values in the ECG, is used to calculate. To solve this, it suggests an adjusted (Q i * S i ) algorithm that defines a specific distance from the location of R-peak to obtain the Q i and S i values. The algorithm can use balanced input data to determine the features, thereby enabling a highly accurate dynamic biometric system.</description><subject>Adjusted (Q<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">ᵢ S<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">ᵢ )</subject><subject>Algorithms</subject><subject>Biometrics</subject><subject>electrocardiogram (ECG)</subject><subject>Electrocardiography</subject><subject>Feature extraction</subject><subject>Heuristic algorithms</subject><subject>personal identification</subject><subject>QRS complex</subject><subject>Security</subject><subject>Security systems</subject><subject>Silicon</subject><subject>Time-domain analysis</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1Lw0AUDKJgqf0FvQS86CF1P7Kb7LGGthYKKlU8Lm8_oltqU3cTof_erSniu7xhmJnHmyQZYzTBGIm7aVXN1usJQVhMiECUFewsGRDMRUYZ5ef_8GUyCmGD4pSRYsUgmc-qRXYPwZp0ar5hpyN4sj40O9imS2N3raudhtY1u3TdduaQvrn2I2o3XWij9ubZpWt3e5Vc1LANdnTaw-R1PnupHrLV42JZTVeZpoSyjHAkTEGJEphYJXjBawWFUpxblXNstbFgqMkZtcRwoEaUGJc5rS2uC6wZHSbLPtc0sJF77z7BH2QDTv4SjX-X4Funt1ZqDIpEF0CNck1ACAFGCMPLHClQPGZd91l733x1NrRy03Q-_h0kyRnjFBFGo4r2Ku2bELyt_65iJI_9y75_eexfnvqPrnHvctbaP0fJec4LSn8Apal_Og</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Ko, Hoon</creator><creator>Ogiela, Marek R.</creator><creator>Ogiela, Lidia</creator><creator>Mesicek, Libor</creator><creator>Lee, Myoungwon</creator><creator>Choi, Junho</creator><creator>Kim, Pankoo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4604-1735</orcidid><orcidid>https://orcid.org/0000-0003-0111-5152</orcidid></search><sort><creationdate>2019</creationdate><title>ECG-Based Advanced Personal Identification Study With Adjusted (Qi Si)</title><author>Ko, Hoon ; Ogiela, Marek R. ; Ogiela, Lidia ; Mesicek, Libor ; Lee, Myoungwon ; Choi, Junho ; Kim, Pankoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3235-2609d732b912eb9676fba7bb66eb461ecdead3d453e2d6a3d9811843fe1f71c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adjusted (Q<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">ᵢ S<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">ᵢ )</topic><topic>Algorithms</topic><topic>Biometrics</topic><topic>electrocardiogram (ECG)</topic><topic>Electrocardiography</topic><topic>Feature extraction</topic><topic>Heuristic algorithms</topic><topic>personal identification</topic><topic>QRS complex</topic><topic>Security</topic><topic>Security systems</topic><topic>Silicon</topic><topic>Time-domain analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ko, Hoon</creatorcontrib><creatorcontrib>Ogiela, Marek R.</creatorcontrib><creatorcontrib>Ogiela, Lidia</creatorcontrib><creatorcontrib>Mesicek, Libor</creatorcontrib><creatorcontrib>Lee, Myoungwon</creatorcontrib><creatorcontrib>Choi, Junho</creatorcontrib><creatorcontrib>Kim, Pankoo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ko, Hoon</au><au>Ogiela, Marek R.</au><au>Ogiela, Lidia</au><au>Mesicek, Libor</au><au>Lee, Myoungwon</au><au>Choi, Junho</au><au>Kim, Pankoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ECG-Based Advanced Personal Identification Study With Adjusted (Qi Si)</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>40078</spage><epage>40084</epage><pages>40078-40084</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Although many security systems with biometric information have appeared, they only have been used the static bio-information, e.g., a fingerprint, ris, and so on. However, because these values are permanent, the attackers can modify and abuse that. To overcome this problem, many researchers would like to use dynamic bio-information, e.g., electrocardiograms (ECG), in security systems. In this case, a sensor in the system must measure the dynamic bio-information instead. The difficulty is that usually, the measured data is different whenever it measures. Therefore if the data is applied to existing algorithms, the results will not be matched and the user will be rejected to pass. This is because an unstable base point, which are Q and S values in the ECG, is used to calculate. To solve this, it suggests an adjusted (Q i * S i ) algorithm that defines a specific distance from the location of R-peak to obtain the Q i and S i values. The algorithm can use balanced input data to determine the features, thereby enabling a highly accurate dynamic biometric system.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2903575</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4604-1735</orcidid><orcidid>https://orcid.org/0000-0003-0111-5152</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.40078-40084 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2455630253 |
source | IEEE Xplore Open Access Journals |
subjects | Adjusted (Q<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">ᵢ S<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">ᵢ ) Algorithms Biometrics electrocardiogram (ECG) Electrocardiography Feature extraction Heuristic algorithms personal identification QRS complex Security Security systems Silicon Time-domain analysis Training |
title | ECG-Based Advanced Personal Identification Study With Adjusted (Qi Si) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A51%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ECG-Based%20Advanced%20Personal%20Identification%20Study%20With%20Adjusted%20(Qi%20Si)&rft.jtitle=IEEE%20access&rft.au=Ko,%20Hoon&rft.date=2019&rft.volume=7&rft.spage=40078&rft.epage=40084&rft.pages=40078-40084&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2903575&rft_dat=%3Cproquest_doaj_%3E2455630253%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3235-2609d732b912eb9676fba7bb66eb461ecdead3d453e2d6a3d9811843fe1f71c53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455630253&rft_id=info:pmid/&rft_ieee_id=8664673&rfr_iscdi=true |