Loading…

Optimized Energy Aware 5G Network Function Virtualization

In this paper, network function virtualization (NFV) is identified as a promising key technology, which can contribute to energy-efficiency improvement in 5G networks. An optical network supported architecture is proposed and investigated in this paper to provide the wired infrastructure needed in 5...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2019, Vol.7, p.44939-44958
Main Authors: Al-Quzweeni, Ahmed N., Lawey, Ahmed Q., Elgorashi, Taisir E. H., Elmirghani, Jaafar M. H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c474t-fdc15f027ff00ab324486b62cb0d98fe94f7852854b8c4948723d38e98e90f933
cites cdi_FETCH-LOGICAL-c474t-fdc15f027ff00ab324486b62cb0d98fe94f7852854b8c4948723d38e98e90f933
container_end_page 44958
container_issue
container_start_page 44939
container_title IEEE access
container_volume 7
creator Al-Quzweeni, Ahmed N.
Lawey, Ahmed Q.
Elgorashi, Taisir E. H.
Elmirghani, Jaafar M. H.
description In this paper, network function virtualization (NFV) is identified as a promising key technology, which can contribute to energy-efficiency improvement in 5G networks. An optical network supported architecture is proposed and investigated in this paper to provide the wired infrastructure needed in 5G networks and to support NFV toward an energy efficient 5G network. In this paper, the mobile core network functions, as well as baseband function, are virtualized and provided as VMs. The impact of the total number of active users in the network, backhaul/fronthaul configurations, and VM inter-traffic are investigated. A mixed integer linear programming (MILP) optimization model is developed with the objective of minimizing the total power consumption by optimizing the VMs location and VMs servers' utilization. The MILP model results show that virtualization can result in up to 38% (average 34%) energy saving. The results also reveal how the total number of active users affects the baseband virtual machines (BBUVMs) optimal distribution whilst the core network virtual machines (CNVMs) distribution is affected mainly by the inter-traffic between the VMs. For real-time implementation, two heuristics are developed, an energy efficient NFV without CNVMs inter-traffic (EENFVnoITr) heuristic and an energy efficient NFV with CNVMs inter-traffic (EENFVwithITr) heuristic, both produce comparable results to the optimal MILP results. Finally, a genetic algorithm is developed for further verification of the results.
doi_str_mv 10.1109/ACCESS.2019.2907798
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2455632303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8675284</ieee_id><doaj_id>oai_doaj_org_article_ccff4caf179d4d84b4f6df68466ae8ce</doaj_id><sourcerecordid>2455632303</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-fdc15f027ff00ab324486b62cb0d98fe94f7852854b8c4948723d38e98e90f933</originalsourceid><addsrcrecordid>eNpNUNtqwkAQXUoLFesX-BLoc-xm7_soQa0g9cG2r8tmL7JWE7uJiH59k6ZIh4G5MOfMzAFgnMFJlkH5Ms3z2WYzQTCTEyQh51LcgQHKmEwxxez-X_4IRnW9g62JtkX5AMj1sQmHcHU2mZUubi_J9KyjS-gieXPNuYpfyfxUmiZUZfIZYnPS-3DVXfkEHrze1270F4fgYz57z1_T1XqxzKer1BBOmtRbk1EPEfceQl1gRIhgBUOmgFYK7yTxXFAkKCmEIZIIjrDFwsnWoZcYD8Gy57WV3qljDAcdL6rSQf02qrhVOjbB7J0yxntitM-4tMQKUhDPrGeCMKadMK7leu65jrH6Prm6UbvqFMv2fIUIpQwjDLuNuJ8ysarr6PxtawZVJ7nqJVed5OpP8hY17lHBOXdDCMbb5wj-ARBFfAc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455632303</pqid></control><display><type>article</type><title>Optimized Energy Aware 5G Network Function Virtualization</title><source>IEEE Open Access Journals</source><creator>Al-Quzweeni, Ahmed N. ; Lawey, Ahmed Q. ; Elgorashi, Taisir E. H. ; Elmirghani, Jaafar M. H.</creator><creatorcontrib>Al-Quzweeni, Ahmed N. ; Lawey, Ahmed Q. ; Elgorashi, Taisir E. H. ; Elmirghani, Jaafar M. H.</creatorcontrib><description>In this paper, network function virtualization (NFV) is identified as a promising key technology, which can contribute to energy-efficiency improvement in 5G networks. An optical network supported architecture is proposed and investigated in this paper to provide the wired infrastructure needed in 5G networks and to support NFV toward an energy efficient 5G network. In this paper, the mobile core network functions, as well as baseband function, are virtualized and provided as VMs. The impact of the total number of active users in the network, backhaul/fronthaul configurations, and VM inter-traffic are investigated. A mixed integer linear programming (MILP) optimization model is developed with the objective of minimizing the total power consumption by optimizing the VMs location and VMs servers' utilization. The MILP model results show that virtualization can result in up to 38% (average 34%) energy saving. The results also reveal how the total number of active users affects the baseband virtual machines (BBUVMs) optimal distribution whilst the core network virtual machines (CNVMs) distribution is affected mainly by the inter-traffic between the VMs. For real-time implementation, two heuristics are developed, an energy efficient NFV without CNVMs inter-traffic (EENFVnoITr) heuristic and an energy efficient NFV with CNVMs inter-traffic (EENFVwithITr) heuristic, both produce comparable results to the optimal MILP results. Finally, a genetic algorithm is developed for further verification of the results.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2907798</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>5G mobile communication ; 5G networks ; backhaul ; Bandwidth ; Baseband ; BBU ; Energy ; Energy efficiency ; fronthaul ; genetic algorithm ; Genetic algorithms ; Integer programming ; IP over WDM ; Linear programming ; Long Term Evolution ; Mixed integer ; Network function virtualization ; NFV ; Optical communication ; Optimization ; Power consumption ; Virtual environments ; Virtual machining ; Wireless networks</subject><ispartof>IEEE access, 2019, Vol.7, p.44939-44958</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-fdc15f027ff00ab324486b62cb0d98fe94f7852854b8c4948723d38e98e90f933</citedby><cites>FETCH-LOGICAL-c474t-fdc15f027ff00ab324486b62cb0d98fe94f7852854b8c4948723d38e98e90f933</cites><orcidid>0000-0003-3058-8127</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8675284$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Al-Quzweeni, Ahmed N.</creatorcontrib><creatorcontrib>Lawey, Ahmed Q.</creatorcontrib><creatorcontrib>Elgorashi, Taisir E. H.</creatorcontrib><creatorcontrib>Elmirghani, Jaafar M. H.</creatorcontrib><title>Optimized Energy Aware 5G Network Function Virtualization</title><title>IEEE access</title><addtitle>Access</addtitle><description>In this paper, network function virtualization (NFV) is identified as a promising key technology, which can contribute to energy-efficiency improvement in 5G networks. An optical network supported architecture is proposed and investigated in this paper to provide the wired infrastructure needed in 5G networks and to support NFV toward an energy efficient 5G network. In this paper, the mobile core network functions, as well as baseband function, are virtualized and provided as VMs. The impact of the total number of active users in the network, backhaul/fronthaul configurations, and VM inter-traffic are investigated. A mixed integer linear programming (MILP) optimization model is developed with the objective of minimizing the total power consumption by optimizing the VMs location and VMs servers' utilization. The MILP model results show that virtualization can result in up to 38% (average 34%) energy saving. The results also reveal how the total number of active users affects the baseband virtual machines (BBUVMs) optimal distribution whilst the core network virtual machines (CNVMs) distribution is affected mainly by the inter-traffic between the VMs. For real-time implementation, two heuristics are developed, an energy efficient NFV without CNVMs inter-traffic (EENFVnoITr) heuristic and an energy efficient NFV with CNVMs inter-traffic (EENFVwithITr) heuristic, both produce comparable results to the optimal MILP results. Finally, a genetic algorithm is developed for further verification of the results.</description><subject>5G mobile communication</subject><subject>5G networks</subject><subject>backhaul</subject><subject>Bandwidth</subject><subject>Baseband</subject><subject>BBU</subject><subject>Energy</subject><subject>Energy efficiency</subject><subject>fronthaul</subject><subject>genetic algorithm</subject><subject>Genetic algorithms</subject><subject>Integer programming</subject><subject>IP over WDM</subject><subject>Linear programming</subject><subject>Long Term Evolution</subject><subject>Mixed integer</subject><subject>Network function virtualization</subject><subject>NFV</subject><subject>Optical communication</subject><subject>Optimization</subject><subject>Power consumption</subject><subject>Virtual environments</subject><subject>Virtual machining</subject><subject>Wireless networks</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUNtqwkAQXUoLFesX-BLoc-xm7_soQa0g9cG2r8tmL7JWE7uJiH59k6ZIh4G5MOfMzAFgnMFJlkH5Ms3z2WYzQTCTEyQh51LcgQHKmEwxxez-X_4IRnW9g62JtkX5AMj1sQmHcHU2mZUubi_J9KyjS-gieXPNuYpfyfxUmiZUZfIZYnPS-3DVXfkEHrze1270F4fgYz57z1_T1XqxzKer1BBOmtRbk1EPEfceQl1gRIhgBUOmgFYK7yTxXFAkKCmEIZIIjrDFwsnWoZcYD8Gy57WV3qljDAcdL6rSQf02qrhVOjbB7J0yxntitM-4tMQKUhDPrGeCMKadMK7leu65jrH6Prm6UbvqFMv2fIUIpQwjDLuNuJ8ysarr6PxtawZVJ7nqJVed5OpP8hY17lHBOXdDCMbb5wj-ARBFfAc</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Al-Quzweeni, Ahmed N.</creator><creator>Lawey, Ahmed Q.</creator><creator>Elgorashi, Taisir E. H.</creator><creator>Elmirghani, Jaafar M. H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3058-8127</orcidid></search><sort><creationdate>2019</creationdate><title>Optimized Energy Aware 5G Network Function Virtualization</title><author>Al-Quzweeni, Ahmed N. ; Lawey, Ahmed Q. ; Elgorashi, Taisir E. H. ; Elmirghani, Jaafar M. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-fdc15f027ff00ab324486b62cb0d98fe94f7852854b8c4948723d38e98e90f933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>5G mobile communication</topic><topic>5G networks</topic><topic>backhaul</topic><topic>Bandwidth</topic><topic>Baseband</topic><topic>BBU</topic><topic>Energy</topic><topic>Energy efficiency</topic><topic>fronthaul</topic><topic>genetic algorithm</topic><topic>Genetic algorithms</topic><topic>Integer programming</topic><topic>IP over WDM</topic><topic>Linear programming</topic><topic>Long Term Evolution</topic><topic>Mixed integer</topic><topic>Network function virtualization</topic><topic>NFV</topic><topic>Optical communication</topic><topic>Optimization</topic><topic>Power consumption</topic><topic>Virtual environments</topic><topic>Virtual machining</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al-Quzweeni, Ahmed N.</creatorcontrib><creatorcontrib>Lawey, Ahmed Q.</creatorcontrib><creatorcontrib>Elgorashi, Taisir E. H.</creatorcontrib><creatorcontrib>Elmirghani, Jaafar M. H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (IEEE/IET Electronic Library - IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al-Quzweeni, Ahmed N.</au><au>Lawey, Ahmed Q.</au><au>Elgorashi, Taisir E. H.</au><au>Elmirghani, Jaafar M. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimized Energy Aware 5G Network Function Virtualization</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>44939</spage><epage>44958</epage><pages>44939-44958</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In this paper, network function virtualization (NFV) is identified as a promising key technology, which can contribute to energy-efficiency improvement in 5G networks. An optical network supported architecture is proposed and investigated in this paper to provide the wired infrastructure needed in 5G networks and to support NFV toward an energy efficient 5G network. In this paper, the mobile core network functions, as well as baseband function, are virtualized and provided as VMs. The impact of the total number of active users in the network, backhaul/fronthaul configurations, and VM inter-traffic are investigated. A mixed integer linear programming (MILP) optimization model is developed with the objective of minimizing the total power consumption by optimizing the VMs location and VMs servers' utilization. The MILP model results show that virtualization can result in up to 38% (average 34%) energy saving. The results also reveal how the total number of active users affects the baseband virtual machines (BBUVMs) optimal distribution whilst the core network virtual machines (CNVMs) distribution is affected mainly by the inter-traffic between the VMs. For real-time implementation, two heuristics are developed, an energy efficient NFV without CNVMs inter-traffic (EENFVnoITr) heuristic and an energy efficient NFV with CNVMs inter-traffic (EENFVwithITr) heuristic, both produce comparable results to the optimal MILP results. Finally, a genetic algorithm is developed for further verification of the results.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2907798</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-3058-8127</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.44939-44958
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2455632303
source IEEE Open Access Journals
subjects 5G mobile communication
5G networks
backhaul
Bandwidth
Baseband
BBU
Energy
Energy efficiency
fronthaul
genetic algorithm
Genetic algorithms
Integer programming
IP over WDM
Linear programming
Long Term Evolution
Mixed integer
Network function virtualization
NFV
Optical communication
Optimization
Power consumption
Virtual environments
Virtual machining
Wireless networks
title Optimized Energy Aware 5G Network Function Virtualization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A33%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimized%20Energy%20Aware%205G%20Network%20Function%20Virtualization&rft.jtitle=IEEE%20access&rft.au=Al-Quzweeni,%20Ahmed%20N.&rft.date=2019&rft.volume=7&rft.spage=44939&rft.epage=44958&rft.pages=44939-44958&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2907798&rft_dat=%3Cproquest_ieee_%3E2455632303%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-fdc15f027ff00ab324486b62cb0d98fe94f7852854b8c4948723d38e98e90f933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455632303&rft_id=info:pmid/&rft_ieee_id=8675284&rfr_iscdi=true