Loading…
Neural Networks in Time-Optimal Low-Thrust Interplanetary Transfers
In this paper, neural networks are trained to learn the optimal time, the initial costates, and the optimal control law of time-optimal low-thrust interplanetary trajectories. The aim is to overcome the difficult selection of first guess costates in indirect optimization, which limits their implemen...
Saved in:
Published in: | IEEE access 2019, Vol.7, p.156413-156419 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, neural networks are trained to learn the optimal time, the initial costates, and the optimal control law of time-optimal low-thrust interplanetary trajectories. The aim is to overcome the difficult selection of first guess costates in indirect optimization, which limits their implementation in global optimization and prevents on-board applications. After generating a dataset, three networks that predict the optimal time, the initial costate, and the optimal control law are trained. A performance assessment shows that neural networks are able to predict the optimal time and initial costate accurately, especially a 100% success rate is achieved when neural networks are used to initialize the shooting function of indirtect methods. Moreover, learning the state-control pairs shows that neural networks can be utilized in real-time, on-board optimal control. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2019.2946657 |