Loading…

Multi-User Full Duplex Transceiver Design for mmWave Systems Using Learning-Aided Channel Prediction

Millimeter Wave (mmWave) technology coupled with full duplex (FD) communication has the potential of increasing the spectral efficiency. However, the self-interference (SI) encountered in the FD mode and the ubiquitous multi-user interference (MI) contaminates the signal. Furthermore, the system per...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2019, Vol.7, p.66068-66083
Main Authors: Satyanarayana, K., El-Hajjar, Mohammed, Mourad, Alain A. M., Hanzo, Lajos
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c458t-7d56ebf55f0a29209a86d9d549eff4475d7479e8576424b016abc08b452f7faf3
cites cdi_FETCH-LOGICAL-c458t-7d56ebf55f0a29209a86d9d549eff4475d7479e8576424b016abc08b452f7faf3
container_end_page 66083
container_issue
container_start_page 66068
container_title IEEE access
container_volume 7
creator Satyanarayana, K.
El-Hajjar, Mohammed
Mourad, Alain A. M.
Hanzo, Lajos
description Millimeter Wave (mmWave) technology coupled with full duplex (FD) communication has the potential of increasing the spectral efficiency. However, the self-interference (SI) encountered in the FD mode and the ubiquitous multi-user interference (MI) contaminates the signal. Furthermore, the system performance may also be limited by channel aging that arises because of the time-varying nature of the channel. Therefore, in this paper, we conceive FD hybrid beamforming (HBF) for K -user multiple-input multiple-output (MIMO)-aided orthogonal frequency division multiplexing (OFDM) using learning-aided channel prediction. We first derive a joint precoder and combiner design for full duplex K -user MIMO-OFDM interference channels, where we aim for minimizing both the residual SI and the MI, followed by an iterative hybrid decomposition technique developed for OFDM systems. Then, we propose a learning-aided channel prediction technique for systems suffering from channel aging relying on a radial basis neural network, where we show by simulation that upon using sufficient training, learning-assisted channel prediction can faithfully estimate the current channel. Furthermore, we demonstrate by simulations that our proposed joint hybrid precoder and combiner design outperforms the popular Eigen beamforming (EBF) technique by about 5 dB for a 128 \times 32 -element MIMO aided OFDM system having 32 sub-carriers.
doi_str_mv 10.1109/ACCESS.2019.2916799
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2455638199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8713847</ieee_id><doaj_id>oai_doaj_org_article_93faeefb8c174c6db3b09847e6a57aab</doaj_id><sourcerecordid>2455638199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-7d56ebf55f0a29209a86d9d549eff4475d7479e8576424b016abc08b452f7faf3</originalsourceid><addsrcrecordid>eNpNUV1L5DAULYsLK-ov8CXgc8ek-X4cqu4KIwrjsI8hbW7GDJ12NmnF-fcbrYj35V4O55x74BTFJcELQrC-Xtb17Xq9qDDRi0oTIbX-UZxWROiScipOvt2_iouUdjiPyhCXp4V7mLoxlJsEEd1NXYdupkMHb-g52j61EF4zfgMpbHvkh4j2-7_2FdD6mEbYJ7RJod-iFdjY56NcBgcO1S-276FDTxFcaMcw9OfFT2-7BBef-6zY3N0-13_K1ePv-3q5KlvG1VhKxwU0nnOPbaUrrK0STjvONHjPmOROMqlBcSlYxRpMhG1arBrGKy-99fSsuJ993WB35hDD3sajGWwwH8AQt8bGMbQdGE29BfCNaolkrXANbbBWTIKwXFrbZK-r2esQh38TpNHshin2Ob6pGOeCKqJ1ZtGZ1cYhpQj-6yvB5r0dM7dj3tsxn-1k1eWsCgDwpVCS0JyA_gfH8YvN</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455638199</pqid></control><display><type>article</type><title>Multi-User Full Duplex Transceiver Design for mmWave Systems Using Learning-Aided Channel Prediction</title><source>IEEE Xplore Open Access Journals</source><creator>Satyanarayana, K. ; El-Hajjar, Mohammed ; Mourad, Alain A. M. ; Hanzo, Lajos</creator><creatorcontrib>Satyanarayana, K. ; El-Hajjar, Mohammed ; Mourad, Alain A. M. ; Hanzo, Lajos</creatorcontrib><description><![CDATA[Millimeter Wave (mmWave) technology coupled with full duplex (FD) communication has the potential of increasing the spectral efficiency. However, the self-interference (SI) encountered in the FD mode and the ubiquitous multi-user interference (MI) contaminates the signal. Furthermore, the system performance may also be limited by channel aging that arises because of the time-varying nature of the channel. Therefore, in this paper, we conceive FD hybrid beamforming (HBF) for <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula>-user multiple-input multiple-output (MIMO)-aided orthogonal frequency division multiplexing (OFDM) using learning-aided channel prediction. We first derive a joint precoder and combiner design for full duplex <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula>-user MIMO-OFDM interference channels, where we aim for minimizing both the residual SI and the MI, followed by an iterative hybrid decomposition technique developed for OFDM systems. Then, we propose a learning-aided channel prediction technique for systems suffering from channel aging relying on a radial basis neural network, where we show by simulation that upon using sufficient training, learning-assisted channel prediction can faithfully estimate the current channel. Furthermore, we demonstrate by simulations that our proposed joint hybrid precoder and combiner design outperforms the popular Eigen beamforming (EBF) technique by about 5 dB for a <inline-formula> <tex-math notation="LaTeX">128 \times 32 </tex-math></inline-formula>-element MIMO aided OFDM system having 32 sub-carriers.]]></description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2916799</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Aging ; Array signal processing ; Beamforming ; Channel estimation ; full duplex ; hybrid precoding ; Interference ; Learning ; machine learning ; Millimeter wave ; Millimeter waves ; MIMO ; MIMO communication ; Neural networks ; OFDM ; Orthogonal Frequency Division Multiplexing ; Radio frequency ; Transceivers ; Transmitters</subject><ispartof>IEEE access, 2019, Vol.7, p.66068-66083</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-7d56ebf55f0a29209a86d9d549eff4475d7479e8576424b016abc08b452f7faf3</citedby><cites>FETCH-LOGICAL-c458t-7d56ebf55f0a29209a86d9d549eff4475d7479e8576424b016abc08b452f7faf3</cites><orcidid>0000-0002-2636-5214 ; 0000-0002-7987-1401</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8713847$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Satyanarayana, K.</creatorcontrib><creatorcontrib>El-Hajjar, Mohammed</creatorcontrib><creatorcontrib>Mourad, Alain A. M.</creatorcontrib><creatorcontrib>Hanzo, Lajos</creatorcontrib><title>Multi-User Full Duplex Transceiver Design for mmWave Systems Using Learning-Aided Channel Prediction</title><title>IEEE access</title><addtitle>Access</addtitle><description><![CDATA[Millimeter Wave (mmWave) technology coupled with full duplex (FD) communication has the potential of increasing the spectral efficiency. However, the self-interference (SI) encountered in the FD mode and the ubiquitous multi-user interference (MI) contaminates the signal. Furthermore, the system performance may also be limited by channel aging that arises because of the time-varying nature of the channel. Therefore, in this paper, we conceive FD hybrid beamforming (HBF) for <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula>-user multiple-input multiple-output (MIMO)-aided orthogonal frequency division multiplexing (OFDM) using learning-aided channel prediction. We first derive a joint precoder and combiner design for full duplex <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula>-user MIMO-OFDM interference channels, where we aim for minimizing both the residual SI and the MI, followed by an iterative hybrid decomposition technique developed for OFDM systems. Then, we propose a learning-aided channel prediction technique for systems suffering from channel aging relying on a radial basis neural network, where we show by simulation that upon using sufficient training, learning-assisted channel prediction can faithfully estimate the current channel. Furthermore, we demonstrate by simulations that our proposed joint hybrid precoder and combiner design outperforms the popular Eigen beamforming (EBF) technique by about 5 dB for a <inline-formula> <tex-math notation="LaTeX">128 \times 32 </tex-math></inline-formula>-element MIMO aided OFDM system having 32 sub-carriers.]]></description><subject>Aging</subject><subject>Array signal processing</subject><subject>Beamforming</subject><subject>Channel estimation</subject><subject>full duplex</subject><subject>hybrid precoding</subject><subject>Interference</subject><subject>Learning</subject><subject>machine learning</subject><subject>Millimeter wave</subject><subject>Millimeter waves</subject><subject>MIMO</subject><subject>MIMO communication</subject><subject>Neural networks</subject><subject>OFDM</subject><subject>Orthogonal Frequency Division Multiplexing</subject><subject>Radio frequency</subject><subject>Transceivers</subject><subject>Transmitters</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1L5DAULYsLK-ov8CXgc8ek-X4cqu4KIwrjsI8hbW7GDJ12NmnF-fcbrYj35V4O55x74BTFJcELQrC-Xtb17Xq9qDDRi0oTIbX-UZxWROiScipOvt2_iouUdjiPyhCXp4V7mLoxlJsEEd1NXYdupkMHb-g52j61EF4zfgMpbHvkh4j2-7_2FdD6mEbYJ7RJod-iFdjY56NcBgcO1S-276FDTxFcaMcw9OfFT2-7BBef-6zY3N0-13_K1ePv-3q5KlvG1VhKxwU0nnOPbaUrrK0STjvONHjPmOROMqlBcSlYxRpMhG1arBrGKy-99fSsuJ993WB35hDD3sajGWwwH8AQt8bGMbQdGE29BfCNaolkrXANbbBWTIKwXFrbZK-r2esQh38TpNHshin2Ob6pGOeCKqJ1ZtGZ1cYhpQj-6yvB5r0dM7dj3tsxn-1k1eWsCgDwpVCS0JyA_gfH8YvN</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Satyanarayana, K.</creator><creator>El-Hajjar, Mohammed</creator><creator>Mourad, Alain A. M.</creator><creator>Hanzo, Lajos</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2636-5214</orcidid><orcidid>https://orcid.org/0000-0002-7987-1401</orcidid></search><sort><creationdate>2019</creationdate><title>Multi-User Full Duplex Transceiver Design for mmWave Systems Using Learning-Aided Channel Prediction</title><author>Satyanarayana, K. ; El-Hajjar, Mohammed ; Mourad, Alain A. M. ; Hanzo, Lajos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-7d56ebf55f0a29209a86d9d549eff4475d7479e8576424b016abc08b452f7faf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aging</topic><topic>Array signal processing</topic><topic>Beamforming</topic><topic>Channel estimation</topic><topic>full duplex</topic><topic>hybrid precoding</topic><topic>Interference</topic><topic>Learning</topic><topic>machine learning</topic><topic>Millimeter wave</topic><topic>Millimeter waves</topic><topic>MIMO</topic><topic>MIMO communication</topic><topic>Neural networks</topic><topic>OFDM</topic><topic>Orthogonal Frequency Division Multiplexing</topic><topic>Radio frequency</topic><topic>Transceivers</topic><topic>Transmitters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Satyanarayana, K.</creatorcontrib><creatorcontrib>El-Hajjar, Mohammed</creatorcontrib><creatorcontrib>Mourad, Alain A. M.</creatorcontrib><creatorcontrib>Hanzo, Lajos</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Satyanarayana, K.</au><au>El-Hajjar, Mohammed</au><au>Mourad, Alain A. M.</au><au>Hanzo, Lajos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-User Full Duplex Transceiver Design for mmWave Systems Using Learning-Aided Channel Prediction</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>66068</spage><epage>66083</epage><pages>66068-66083</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract><![CDATA[Millimeter Wave (mmWave) technology coupled with full duplex (FD) communication has the potential of increasing the spectral efficiency. However, the self-interference (SI) encountered in the FD mode and the ubiquitous multi-user interference (MI) contaminates the signal. Furthermore, the system performance may also be limited by channel aging that arises because of the time-varying nature of the channel. Therefore, in this paper, we conceive FD hybrid beamforming (HBF) for <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula>-user multiple-input multiple-output (MIMO)-aided orthogonal frequency division multiplexing (OFDM) using learning-aided channel prediction. We first derive a joint precoder and combiner design for full duplex <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula>-user MIMO-OFDM interference channels, where we aim for minimizing both the residual SI and the MI, followed by an iterative hybrid decomposition technique developed for OFDM systems. Then, we propose a learning-aided channel prediction technique for systems suffering from channel aging relying on a radial basis neural network, where we show by simulation that upon using sufficient training, learning-assisted channel prediction can faithfully estimate the current channel. Furthermore, we demonstrate by simulations that our proposed joint hybrid precoder and combiner design outperforms the popular Eigen beamforming (EBF) technique by about 5 dB for a <inline-formula> <tex-math notation="LaTeX">128 \times 32 </tex-math></inline-formula>-element MIMO aided OFDM system having 32 sub-carriers.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2916799</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-2636-5214</orcidid><orcidid>https://orcid.org/0000-0002-7987-1401</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.66068-66083
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2455638199
source IEEE Xplore Open Access Journals
subjects Aging
Array signal processing
Beamforming
Channel estimation
full duplex
hybrid precoding
Interference
Learning
machine learning
Millimeter wave
Millimeter waves
MIMO
MIMO communication
Neural networks
OFDM
Orthogonal Frequency Division Multiplexing
Radio frequency
Transceivers
Transmitters
title Multi-User Full Duplex Transceiver Design for mmWave Systems Using Learning-Aided Channel Prediction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A30%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-User%20Full%20Duplex%20Transceiver%20Design%20for%20mmWave%20Systems%20Using%20Learning-Aided%20Channel%20Prediction&rft.jtitle=IEEE%20access&rft.au=Satyanarayana,%20K.&rft.date=2019&rft.volume=7&rft.spage=66068&rft.epage=66083&rft.pages=66068-66083&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2916799&rft_dat=%3Cproquest_cross%3E2455638199%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c458t-7d56ebf55f0a29209a86d9d549eff4475d7479e8576424b016abc08b452f7faf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455638199&rft_id=info:pmid/&rft_ieee_id=8713847&rfr_iscdi=true