Loading…
Multi-User Full Duplex Transceiver Design for mmWave Systems Using Learning-Aided Channel Prediction
Millimeter Wave (mmWave) technology coupled with full duplex (FD) communication has the potential of increasing the spectral efficiency. However, the self-interference (SI) encountered in the FD mode and the ubiquitous multi-user interference (MI) contaminates the signal. Furthermore, the system per...
Saved in:
Published in: | IEEE access 2019, Vol.7, p.66068-66083 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c458t-7d56ebf55f0a29209a86d9d549eff4475d7479e8576424b016abc08b452f7faf3 |
---|---|
cites | cdi_FETCH-LOGICAL-c458t-7d56ebf55f0a29209a86d9d549eff4475d7479e8576424b016abc08b452f7faf3 |
container_end_page | 66083 |
container_issue | |
container_start_page | 66068 |
container_title | IEEE access |
container_volume | 7 |
creator | Satyanarayana, K. El-Hajjar, Mohammed Mourad, Alain A. M. Hanzo, Lajos |
description | Millimeter Wave (mmWave) technology coupled with full duplex (FD) communication has the potential of increasing the spectral efficiency. However, the self-interference (SI) encountered in the FD mode and the ubiquitous multi-user interference (MI) contaminates the signal. Furthermore, the system performance may also be limited by channel aging that arises because of the time-varying nature of the channel. Therefore, in this paper, we conceive FD hybrid beamforming (HBF) for K -user multiple-input multiple-output (MIMO)-aided orthogonal frequency division multiplexing (OFDM) using learning-aided channel prediction. We first derive a joint precoder and combiner design for full duplex K -user MIMO-OFDM interference channels, where we aim for minimizing both the residual SI and the MI, followed by an iterative hybrid decomposition technique developed for OFDM systems. Then, we propose a learning-aided channel prediction technique for systems suffering from channel aging relying on a radial basis neural network, where we show by simulation that upon using sufficient training, learning-assisted channel prediction can faithfully estimate the current channel. Furthermore, we demonstrate by simulations that our proposed joint hybrid precoder and combiner design outperforms the popular Eigen beamforming (EBF) technique by about 5 dB for a 128 \times 32 -element MIMO aided OFDM system having 32 sub-carriers. |
doi_str_mv | 10.1109/ACCESS.2019.2916799 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2455638199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8713847</ieee_id><doaj_id>oai_doaj_org_article_93faeefb8c174c6db3b09847e6a57aab</doaj_id><sourcerecordid>2455638199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-7d56ebf55f0a29209a86d9d549eff4475d7479e8576424b016abc08b452f7faf3</originalsourceid><addsrcrecordid>eNpNUV1L5DAULYsLK-ov8CXgc8ek-X4cqu4KIwrjsI8hbW7GDJ12NmnF-fcbrYj35V4O55x74BTFJcELQrC-Xtb17Xq9qDDRi0oTIbX-UZxWROiScipOvt2_iouUdjiPyhCXp4V7mLoxlJsEEd1NXYdupkMHb-g52j61EF4zfgMpbHvkh4j2-7_2FdD6mEbYJ7RJod-iFdjY56NcBgcO1S-276FDTxFcaMcw9OfFT2-7BBef-6zY3N0-13_K1ePv-3q5KlvG1VhKxwU0nnOPbaUrrK0STjvONHjPmOROMqlBcSlYxRpMhG1arBrGKy-99fSsuJ993WB35hDD3sajGWwwH8AQt8bGMbQdGE29BfCNaolkrXANbbBWTIKwXFrbZK-r2esQh38TpNHshin2Ob6pGOeCKqJ1ZtGZ1cYhpQj-6yvB5r0dM7dj3tsxn-1k1eWsCgDwpVCS0JyA_gfH8YvN</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455638199</pqid></control><display><type>article</type><title>Multi-User Full Duplex Transceiver Design for mmWave Systems Using Learning-Aided Channel Prediction</title><source>IEEE Xplore Open Access Journals</source><creator>Satyanarayana, K. ; El-Hajjar, Mohammed ; Mourad, Alain A. M. ; Hanzo, Lajos</creator><creatorcontrib>Satyanarayana, K. ; El-Hajjar, Mohammed ; Mourad, Alain A. M. ; Hanzo, Lajos</creatorcontrib><description><![CDATA[Millimeter Wave (mmWave) technology coupled with full duplex (FD) communication has the potential of increasing the spectral efficiency. However, the self-interference (SI) encountered in the FD mode and the ubiquitous multi-user interference (MI) contaminates the signal. Furthermore, the system performance may also be limited by channel aging that arises because of the time-varying nature of the channel. Therefore, in this paper, we conceive FD hybrid beamforming (HBF) for <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula>-user multiple-input multiple-output (MIMO)-aided orthogonal frequency division multiplexing (OFDM) using learning-aided channel prediction. We first derive a joint precoder and combiner design for full duplex <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula>-user MIMO-OFDM interference channels, where we aim for minimizing both the residual SI and the MI, followed by an iterative hybrid decomposition technique developed for OFDM systems. Then, we propose a learning-aided channel prediction technique for systems suffering from channel aging relying on a radial basis neural network, where we show by simulation that upon using sufficient training, learning-assisted channel prediction can faithfully estimate the current channel. Furthermore, we demonstrate by simulations that our proposed joint hybrid precoder and combiner design outperforms the popular Eigen beamforming (EBF) technique by about 5 dB for a <inline-formula> <tex-math notation="LaTeX">128 \times 32 </tex-math></inline-formula>-element MIMO aided OFDM system having 32 sub-carriers.]]></description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2916799</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Aging ; Array signal processing ; Beamforming ; Channel estimation ; full duplex ; hybrid precoding ; Interference ; Learning ; machine learning ; Millimeter wave ; Millimeter waves ; MIMO ; MIMO communication ; Neural networks ; OFDM ; Orthogonal Frequency Division Multiplexing ; Radio frequency ; Transceivers ; Transmitters</subject><ispartof>IEEE access, 2019, Vol.7, p.66068-66083</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-7d56ebf55f0a29209a86d9d549eff4475d7479e8576424b016abc08b452f7faf3</citedby><cites>FETCH-LOGICAL-c458t-7d56ebf55f0a29209a86d9d549eff4475d7479e8576424b016abc08b452f7faf3</cites><orcidid>0000-0002-2636-5214 ; 0000-0002-7987-1401</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8713847$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Satyanarayana, K.</creatorcontrib><creatorcontrib>El-Hajjar, Mohammed</creatorcontrib><creatorcontrib>Mourad, Alain A. M.</creatorcontrib><creatorcontrib>Hanzo, Lajos</creatorcontrib><title>Multi-User Full Duplex Transceiver Design for mmWave Systems Using Learning-Aided Channel Prediction</title><title>IEEE access</title><addtitle>Access</addtitle><description><![CDATA[Millimeter Wave (mmWave) technology coupled with full duplex (FD) communication has the potential of increasing the spectral efficiency. However, the self-interference (SI) encountered in the FD mode and the ubiquitous multi-user interference (MI) contaminates the signal. Furthermore, the system performance may also be limited by channel aging that arises because of the time-varying nature of the channel. Therefore, in this paper, we conceive FD hybrid beamforming (HBF) for <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula>-user multiple-input multiple-output (MIMO)-aided orthogonal frequency division multiplexing (OFDM) using learning-aided channel prediction. We first derive a joint precoder and combiner design for full duplex <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula>-user MIMO-OFDM interference channels, where we aim for minimizing both the residual SI and the MI, followed by an iterative hybrid decomposition technique developed for OFDM systems. Then, we propose a learning-aided channel prediction technique for systems suffering from channel aging relying on a radial basis neural network, where we show by simulation that upon using sufficient training, learning-assisted channel prediction can faithfully estimate the current channel. Furthermore, we demonstrate by simulations that our proposed joint hybrid precoder and combiner design outperforms the popular Eigen beamforming (EBF) technique by about 5 dB for a <inline-formula> <tex-math notation="LaTeX">128 \times 32 </tex-math></inline-formula>-element MIMO aided OFDM system having 32 sub-carriers.]]></description><subject>Aging</subject><subject>Array signal processing</subject><subject>Beamforming</subject><subject>Channel estimation</subject><subject>full duplex</subject><subject>hybrid precoding</subject><subject>Interference</subject><subject>Learning</subject><subject>machine learning</subject><subject>Millimeter wave</subject><subject>Millimeter waves</subject><subject>MIMO</subject><subject>MIMO communication</subject><subject>Neural networks</subject><subject>OFDM</subject><subject>Orthogonal Frequency Division Multiplexing</subject><subject>Radio frequency</subject><subject>Transceivers</subject><subject>Transmitters</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1L5DAULYsLK-ov8CXgc8ek-X4cqu4KIwrjsI8hbW7GDJ12NmnF-fcbrYj35V4O55x74BTFJcELQrC-Xtb17Xq9qDDRi0oTIbX-UZxWROiScipOvt2_iouUdjiPyhCXp4V7mLoxlJsEEd1NXYdupkMHb-g52j61EF4zfgMpbHvkh4j2-7_2FdD6mEbYJ7RJod-iFdjY56NcBgcO1S-276FDTxFcaMcw9OfFT2-7BBef-6zY3N0-13_K1ePv-3q5KlvG1VhKxwU0nnOPbaUrrK0STjvONHjPmOROMqlBcSlYxRpMhG1arBrGKy-99fSsuJ993WB35hDD3sajGWwwH8AQt8bGMbQdGE29BfCNaolkrXANbbBWTIKwXFrbZK-r2esQh38TpNHshin2Ob6pGOeCKqJ1ZtGZ1cYhpQj-6yvB5r0dM7dj3tsxn-1k1eWsCgDwpVCS0JyA_gfH8YvN</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Satyanarayana, K.</creator><creator>El-Hajjar, Mohammed</creator><creator>Mourad, Alain A. M.</creator><creator>Hanzo, Lajos</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2636-5214</orcidid><orcidid>https://orcid.org/0000-0002-7987-1401</orcidid></search><sort><creationdate>2019</creationdate><title>Multi-User Full Duplex Transceiver Design for mmWave Systems Using Learning-Aided Channel Prediction</title><author>Satyanarayana, K. ; El-Hajjar, Mohammed ; Mourad, Alain A. M. ; Hanzo, Lajos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-7d56ebf55f0a29209a86d9d549eff4475d7479e8576424b016abc08b452f7faf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aging</topic><topic>Array signal processing</topic><topic>Beamforming</topic><topic>Channel estimation</topic><topic>full duplex</topic><topic>hybrid precoding</topic><topic>Interference</topic><topic>Learning</topic><topic>machine learning</topic><topic>Millimeter wave</topic><topic>Millimeter waves</topic><topic>MIMO</topic><topic>MIMO communication</topic><topic>Neural networks</topic><topic>OFDM</topic><topic>Orthogonal Frequency Division Multiplexing</topic><topic>Radio frequency</topic><topic>Transceivers</topic><topic>Transmitters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Satyanarayana, K.</creatorcontrib><creatorcontrib>El-Hajjar, Mohammed</creatorcontrib><creatorcontrib>Mourad, Alain A. M.</creatorcontrib><creatorcontrib>Hanzo, Lajos</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Satyanarayana, K.</au><au>El-Hajjar, Mohammed</au><au>Mourad, Alain A. M.</au><au>Hanzo, Lajos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-User Full Duplex Transceiver Design for mmWave Systems Using Learning-Aided Channel Prediction</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>66068</spage><epage>66083</epage><pages>66068-66083</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract><![CDATA[Millimeter Wave (mmWave) technology coupled with full duplex (FD) communication has the potential of increasing the spectral efficiency. However, the self-interference (SI) encountered in the FD mode and the ubiquitous multi-user interference (MI) contaminates the signal. Furthermore, the system performance may also be limited by channel aging that arises because of the time-varying nature of the channel. Therefore, in this paper, we conceive FD hybrid beamforming (HBF) for <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula>-user multiple-input multiple-output (MIMO)-aided orthogonal frequency division multiplexing (OFDM) using learning-aided channel prediction. We first derive a joint precoder and combiner design for full duplex <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula>-user MIMO-OFDM interference channels, where we aim for minimizing both the residual SI and the MI, followed by an iterative hybrid decomposition technique developed for OFDM systems. Then, we propose a learning-aided channel prediction technique for systems suffering from channel aging relying on a radial basis neural network, where we show by simulation that upon using sufficient training, learning-assisted channel prediction can faithfully estimate the current channel. Furthermore, we demonstrate by simulations that our proposed joint hybrid precoder and combiner design outperforms the popular Eigen beamforming (EBF) technique by about 5 dB for a <inline-formula> <tex-math notation="LaTeX">128 \times 32 </tex-math></inline-formula>-element MIMO aided OFDM system having 32 sub-carriers.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2916799</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-2636-5214</orcidid><orcidid>https://orcid.org/0000-0002-7987-1401</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.66068-66083 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2455638199 |
source | IEEE Xplore Open Access Journals |
subjects | Aging Array signal processing Beamforming Channel estimation full duplex hybrid precoding Interference Learning machine learning Millimeter wave Millimeter waves MIMO MIMO communication Neural networks OFDM Orthogonal Frequency Division Multiplexing Radio frequency Transceivers Transmitters |
title | Multi-User Full Duplex Transceiver Design for mmWave Systems Using Learning-Aided Channel Prediction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A30%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-User%20Full%20Duplex%20Transceiver%20Design%20for%20mmWave%20Systems%20Using%20Learning-Aided%20Channel%20Prediction&rft.jtitle=IEEE%20access&rft.au=Satyanarayana,%20K.&rft.date=2019&rft.volume=7&rft.spage=66068&rft.epage=66083&rft.pages=66068-66083&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2916799&rft_dat=%3Cproquest_cross%3E2455638199%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c458t-7d56ebf55f0a29209a86d9d549eff4475d7479e8576424b016abc08b452f7faf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455638199&rft_id=info:pmid/&rft_ieee_id=8713847&rfr_iscdi=true |