Loading…

Toward Serverless and Efficient Encrypted Deduplication in Mobile Cloud Computing Environments

With the proliferation of new mobile devices, mobile cloud computing technology has emerged to provide rich computing and storage functions for mobile users. The explosive growth of mobile data has led to an increased demand for solutions that conserve storage resources. Data deduplication is a prom...

Full description

Saved in:
Bibliographic Details
Published in:Security and communication networks 2020, Vol.2020 (2020), p.1-15
Main Authors: Yun, Joobeom, Koo, Dongyoung, Hur, Junbeom, Shin, Youngjoo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:With the proliferation of new mobile devices, mobile cloud computing technology has emerged to provide rich computing and storage functions for mobile users. The explosive growth of mobile data has led to an increased demand for solutions that conserve storage resources. Data deduplication is a promising technique that eliminates data redundancy for storage. For mobile cloud storage services, enabling the deduplication of encrypted data is of vital importance to reduce costs and preserve data confidentiality. However, recently proposed solutions for encrypted deduplication lack the desired level of security and efficiency. In this paper, we propose a novel scheme for serverless efficient encrypted deduplication (SEED) in mobile cloud computing environments. Without the aid of additional servers, SEED ensures confidentiality, data integrity, and collusion resistance for outsourced data. The absence of dedicated servers increases the effectiveness of SEED for mobile cloud storage services, in which user mobility is essential. In addition, noninteractive file encryption with the support of lazy encryption greatly reduces latency in the file-upload process. The proposed indexing structure (D-tree) supports the deduplication algorithm and thus makes SEED much more efficient and scalable. Security and performance analyses prove the efficiency and effectiveness of SEED for mobile cloud storage services.
ISSN:1939-0114
1939-0122
DOI:10.1155/2020/3046595