Loading…
Confidentiality-Preserving Publicly Verifiable Computation Schemes for Polynomial Evaluation and Matrix-Vector Multiplication
With the development of cloud services, outsourcing computation tasks to a commercial cloud server has drawn attention of various communities, especially in the Big Data era. Public verifiability offers a flexible functionality in real circumstance where the cloud service provider (CSP) may be untru...
Saved in:
Published in: | Security and communication networks 2018-01, Vol.2018 (2018), p.1-15 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | With the development of cloud services, outsourcing computation tasks to a commercial cloud server has drawn attention of various communities, especially in the Big Data era. Public verifiability offers a flexible functionality in real circumstance where the cloud service provider (CSP) may be untrusted or some malicious users may slander the CSP on purpose. However, sometimes the computational result is sensitive and is supposed to remain undisclosed in the public verification phase, while existing works on publicly verifiable computation (PVC) fail to achieve this requirement. In this paper, we highlight the property of result confidentiality in publicly verifiable computation and present confidentiality-preserving public verifiable computation (CP-PVC) schemes for multivariate polynomial evaluation and matrix-vector multiplication, respectively. The proposed schemes work efficiently under the amortized model and, compared with previous PVC schemes for these computations, achieve confidentiality of computational results, while maintaining the property of public verifiability. The proposed schemes proved to be secure, efficient, and result-confidential. In addition, we provide the algorithms and experimental simulation to show the performance of the proposed schemes, which indicates that our proposal is also acceptable in practice. |
---|---|
ISSN: | 1939-0114 1939-0122 |
DOI: | 10.1155/2018/5275132 |