Loading…

Ultralightweight RFID Authentication Protocols for Low-Cost Passive RFID Tags

The field of pervasive computing especially the Internet of Things (IoT) network is evolving due to high network speed and increased capacity offered by the 5G communication system. The IoT network identifies each device before giving it access to the network. The RFID system is one of the most prom...

Full description

Saved in:
Bibliographic Details
Published in:Security and communication networks 2019, Vol.2019 (2019), p.1-25
Main Authors: Khalid, Madiha, Najam-Ul-Islam, Muhammad, Mujahid, Umar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The field of pervasive computing especially the Internet of Things (IoT) network is evolving due to high network speed and increased capacity offered by the 5G communication system. The IoT network identifies each device before giving it access to the network. The RFID system is one of the most prominent enabling technologies for the node identification. Since the communication between the node and the network takes place over an insecure wireless channel, an authentication mechanism is required to avoid the malicious devices from entering the network. This paper presents a brief survey on the authentication protocols along with the prominent cryptanalysis models for the EPC C1G2 RFID systems. A comparative analysis is provided to highlight the common weaknesses of the existing authentication algorithms and to emphasize on the lack of security standardization for the resource constraint IoT network perception layer. This paper is concluded by proposing an ultralightweight protocol that provides Extremely Good Privacy (EGP). The proposed EGP protocol avoids all the pitfalls highlighted by the cryptanalysis of the existing authentication protocols. The incorporation of the novel ultralightweight primitives, Per-XOR (Px) and Inverse Per-XOR (Px-1), makes the protocol messages more robust and irreversible for all types of adversaries. A comprehensive security analysis illustrates that the proposed protocol proves to be highly resistive against all possible attack scenarios and ensures the security optimally.
ISSN:1939-0114
1939-0122
DOI:10.1155/2019/3295616