Loading…
A Tighter Set-Membership Filter for Some Nonlinear Dynamic Systems
In this paper, we propose a tighter set-membership filter for some nonlinear dynamic systems by using an analytic method and a boundary sampling technique. The nonlinear dynamic systems can be linearized about the current estimate, then the remainder term is bounded in real time by an optimization e...
Saved in:
Published in: | IEEE access 2018-01, Vol.6, p.25351-25362 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-654774d3da638d499c36b883cc68b34ac8ecc4277c8dc6aa28aff259daaaf6623 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-654774d3da638d499c36b883cc68b34ac8ecc4277c8dc6aa28aff259daaaf6623 |
container_end_page | 25362 |
container_issue | |
container_start_page | 25351 |
container_title | IEEE access |
container_volume | 6 |
creator | Wang, Zhiguo Shen, Xiaojing Zhu, Yunmin Pan, Jianxin |
description | In this paper, we propose a tighter set-membership filter for some nonlinear dynamic systems by using an analytic method and a boundary sampling technique. The nonlinear dynamic systems can be linearized about the current estimate, then the remainder term is bounded in real time by an optimization ellipsoid, other than a priori remainder bound. For a 2-D radar system and a quadratic system, some regular properties can be derived for the remainder term, which helps us obtain a tighter bounding ellipsoid to cover the remainder. Moreover, the prediction step and the measurement update step are derived based on the recent optimization method and the on-line bounding ellipsoid of the remainder, so that a tighter set-membership filter can be achieved. The numerical examples demonstrate the effectiveness of the proposed filter. |
doi_str_mv | 10.1109/ACCESS.2018.2830350 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2455878026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8350293</ieee_id><doaj_id>oai_doaj_org_article_988ed40519f44972bdbdae69a5cd967c</doaj_id><sourcerecordid>2455878026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-654774d3da638d499c36b883cc68b34ac8ecc4277c8dc6aa28aff259daaaf6623</originalsourceid><addsrcrecordid>eNpNUMtOwzAQjBBIIOgX9BKJc4rjV-xjKQUqFTi0nK2NvQFXTV3s9NC_JyUIsZddzezMribLxiWZlCXRd9PZbL5aTSgp1YQqRpggZ9kVLaUumGDy_N98mY1S2pC-VA-J6iq7n-Zr__HZYcxX2BUv2NYY06ff549-e0Kb0DOhxfw17LZ-hxDzh-MOWm_z1TF12Kab7KKBbcLRb7_O3h_n69lzsXx7Wsymy8JyorpCCl5V3DEHkinHtbZM1koxa6WqGQer0FpOq8oqZyUAVdA0VGgHAI2UlF1ni8HXBdiYffQtxKMJ4M0PEOKHgdh5u0WjlULHiSh1w7muaO1qByg1COu0rGzvdTt47WP4OmDqzCYc4q5_31AuhKoUobLfYsOWjSGliM3f1ZKYU_ZmyN6csje_2feq8aDyiPinUD1FNWPfx9d--g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455878026</pqid></control><display><type>article</type><title>A Tighter Set-Membership Filter for Some Nonlinear Dynamic Systems</title><source>IEEE Open Access Journals</source><creator>Wang, Zhiguo ; Shen, Xiaojing ; Zhu, Yunmin ; Pan, Jianxin</creator><creatorcontrib>Wang, Zhiguo ; Shen, Xiaojing ; Zhu, Yunmin ; Pan, Jianxin</creatorcontrib><description>In this paper, we propose a tighter set-membership filter for some nonlinear dynamic systems by using an analytic method and a boundary sampling technique. The nonlinear dynamic systems can be linearized about the current estimate, then the remainder term is bounded in real time by an optimization ellipsoid, other than a priori remainder bound. For a 2-D radar system and a quadratic system, some regular properties can be derived for the remainder term, which helps us obtain a tighter bounding ellipsoid to cover the remainder. Moreover, the prediction step and the measurement update step are derived based on the recent optimization method and the on-line bounding ellipsoid of the remainder, so that a tighter set-membership filter can be achieved. The numerical examples demonstrate the effectiveness of the proposed filter.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2018.2830350</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Dynamical systems ; Ellipsoids ; Noise measurement ; Nonlinear dynamic systems ; Nonlinear dynamical systems ; Nonlinear dynamics ; Nonlinear systems ; Optimization ; Radar equipment ; randomization ; Real-time systems ; semi-infinite optimization ; set-membership filter ; Symmetric matrices ; target tracking</subject><ispartof>IEEE access, 2018-01, Vol.6, p.25351-25362</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-654774d3da638d499c36b883cc68b34ac8ecc4277c8dc6aa28aff259daaaf6623</citedby><cites>FETCH-LOGICAL-c408t-654774d3da638d499c36b883cc68b34ac8ecc4277c8dc6aa28aff259daaaf6623</cites><orcidid>0000-0001-9674-700X ; 0000-0003-2604-3597</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8350293$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Wang, Zhiguo</creatorcontrib><creatorcontrib>Shen, Xiaojing</creatorcontrib><creatorcontrib>Zhu, Yunmin</creatorcontrib><creatorcontrib>Pan, Jianxin</creatorcontrib><title>A Tighter Set-Membership Filter for Some Nonlinear Dynamic Systems</title><title>IEEE access</title><addtitle>Access</addtitle><description>In this paper, we propose a tighter set-membership filter for some nonlinear dynamic systems by using an analytic method and a boundary sampling technique. The nonlinear dynamic systems can be linearized about the current estimate, then the remainder term is bounded in real time by an optimization ellipsoid, other than a priori remainder bound. For a 2-D radar system and a quadratic system, some regular properties can be derived for the remainder term, which helps us obtain a tighter bounding ellipsoid to cover the remainder. Moreover, the prediction step and the measurement update step are derived based on the recent optimization method and the on-line bounding ellipsoid of the remainder, so that a tighter set-membership filter can be achieved. The numerical examples demonstrate the effectiveness of the proposed filter.</description><subject>Dynamical systems</subject><subject>Ellipsoids</subject><subject>Noise measurement</subject><subject>Nonlinear dynamic systems</subject><subject>Nonlinear dynamical systems</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear systems</subject><subject>Optimization</subject><subject>Radar equipment</subject><subject>randomization</subject><subject>Real-time systems</subject><subject>semi-infinite optimization</subject><subject>set-membership filter</subject><subject>Symmetric matrices</subject><subject>target tracking</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUMtOwzAQjBBIIOgX9BKJc4rjV-xjKQUqFTi0nK2NvQFXTV3s9NC_JyUIsZddzezMribLxiWZlCXRd9PZbL5aTSgp1YQqRpggZ9kVLaUumGDy_N98mY1S2pC-VA-J6iq7n-Zr__HZYcxX2BUv2NYY06ff549-e0Kb0DOhxfw17LZ-hxDzh-MOWm_z1TF12Kab7KKBbcLRb7_O3h_n69lzsXx7Wsymy8JyorpCCl5V3DEHkinHtbZM1koxa6WqGQer0FpOq8oqZyUAVdA0VGgHAI2UlF1ni8HXBdiYffQtxKMJ4M0PEOKHgdh5u0WjlULHiSh1w7muaO1qByg1COu0rGzvdTt47WP4OmDqzCYc4q5_31AuhKoUobLfYsOWjSGliM3f1ZKYU_ZmyN6csje_2feq8aDyiPinUD1FNWPfx9d--g</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Wang, Zhiguo</creator><creator>Shen, Xiaojing</creator><creator>Zhu, Yunmin</creator><creator>Pan, Jianxin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9674-700X</orcidid><orcidid>https://orcid.org/0000-0003-2604-3597</orcidid></search><sort><creationdate>20180101</creationdate><title>A Tighter Set-Membership Filter for Some Nonlinear Dynamic Systems</title><author>Wang, Zhiguo ; Shen, Xiaojing ; Zhu, Yunmin ; Pan, Jianxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-654774d3da638d499c36b883cc68b34ac8ecc4277c8dc6aa28aff259daaaf6623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Dynamical systems</topic><topic>Ellipsoids</topic><topic>Noise measurement</topic><topic>Nonlinear dynamic systems</topic><topic>Nonlinear dynamical systems</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear systems</topic><topic>Optimization</topic><topic>Radar equipment</topic><topic>randomization</topic><topic>Real-time systems</topic><topic>semi-infinite optimization</topic><topic>set-membership filter</topic><topic>Symmetric matrices</topic><topic>target tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhiguo</creatorcontrib><creatorcontrib>Shen, Xiaojing</creatorcontrib><creatorcontrib>Zhu, Yunmin</creatorcontrib><creatorcontrib>Pan, Jianxin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhiguo</au><au>Shen, Xiaojing</au><au>Zhu, Yunmin</au><au>Pan, Jianxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Tighter Set-Membership Filter for Some Nonlinear Dynamic Systems</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2018-01-01</date><risdate>2018</risdate><volume>6</volume><spage>25351</spage><epage>25362</epage><pages>25351-25362</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In this paper, we propose a tighter set-membership filter for some nonlinear dynamic systems by using an analytic method and a boundary sampling technique. The nonlinear dynamic systems can be linearized about the current estimate, then the remainder term is bounded in real time by an optimization ellipsoid, other than a priori remainder bound. For a 2-D radar system and a quadratic system, some regular properties can be derived for the remainder term, which helps us obtain a tighter bounding ellipsoid to cover the remainder. Moreover, the prediction step and the measurement update step are derived based on the recent optimization method and the on-line bounding ellipsoid of the remainder, so that a tighter set-membership filter can be achieved. The numerical examples demonstrate the effectiveness of the proposed filter.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2018.2830350</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9674-700X</orcidid><orcidid>https://orcid.org/0000-0003-2604-3597</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2018-01, Vol.6, p.25351-25362 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2455878026 |
source | IEEE Open Access Journals |
subjects | Dynamical systems Ellipsoids Noise measurement Nonlinear dynamic systems Nonlinear dynamical systems Nonlinear dynamics Nonlinear systems Optimization Radar equipment randomization Real-time systems semi-infinite optimization set-membership filter Symmetric matrices target tracking |
title | A Tighter Set-Membership Filter for Some Nonlinear Dynamic Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T07%3A24%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Tighter%20Set-Membership%20Filter%20for%20Some%20Nonlinear%20Dynamic%20Systems&rft.jtitle=IEEE%20access&rft.au=Wang,%20Zhiguo&rft.date=2018-01-01&rft.volume=6&rft.spage=25351&rft.epage=25362&rft.pages=25351-25362&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2018.2830350&rft_dat=%3Cproquest_cross%3E2455878026%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-654774d3da638d499c36b883cc68b34ac8ecc4277c8dc6aa28aff259daaaf6623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455878026&rft_id=info:pmid/&rft_ieee_id=8350293&rfr_iscdi=true |