Loading…

A Tighter Set-Membership Filter for Some Nonlinear Dynamic Systems

In this paper, we propose a tighter set-membership filter for some nonlinear dynamic systems by using an analytic method and a boundary sampling technique. The nonlinear dynamic systems can be linearized about the current estimate, then the remainder term is bounded in real time by an optimization e...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2018-01, Vol.6, p.25351-25362
Main Authors: Wang, Zhiguo, Shen, Xiaojing, Zhu, Yunmin, Pan, Jianxin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-654774d3da638d499c36b883cc68b34ac8ecc4277c8dc6aa28aff259daaaf6623
cites cdi_FETCH-LOGICAL-c408t-654774d3da638d499c36b883cc68b34ac8ecc4277c8dc6aa28aff259daaaf6623
container_end_page 25362
container_issue
container_start_page 25351
container_title IEEE access
container_volume 6
creator Wang, Zhiguo
Shen, Xiaojing
Zhu, Yunmin
Pan, Jianxin
description In this paper, we propose a tighter set-membership filter for some nonlinear dynamic systems by using an analytic method and a boundary sampling technique. The nonlinear dynamic systems can be linearized about the current estimate, then the remainder term is bounded in real time by an optimization ellipsoid, other than a priori remainder bound. For a 2-D radar system and a quadratic system, some regular properties can be derived for the remainder term, which helps us obtain a tighter bounding ellipsoid to cover the remainder. Moreover, the prediction step and the measurement update step are derived based on the recent optimization method and the on-line bounding ellipsoid of the remainder, so that a tighter set-membership filter can be achieved. The numerical examples demonstrate the effectiveness of the proposed filter.
doi_str_mv 10.1109/ACCESS.2018.2830350
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2455878026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8350293</ieee_id><doaj_id>oai_doaj_org_article_988ed40519f44972bdbdae69a5cd967c</doaj_id><sourcerecordid>2455878026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-654774d3da638d499c36b883cc68b34ac8ecc4277c8dc6aa28aff259daaaf6623</originalsourceid><addsrcrecordid>eNpNUMtOwzAQjBBIIOgX9BKJc4rjV-xjKQUqFTi0nK2NvQFXTV3s9NC_JyUIsZddzezMribLxiWZlCXRd9PZbL5aTSgp1YQqRpggZ9kVLaUumGDy_N98mY1S2pC-VA-J6iq7n-Zr__HZYcxX2BUv2NYY06ff549-e0Kb0DOhxfw17LZ-hxDzh-MOWm_z1TF12Kab7KKBbcLRb7_O3h_n69lzsXx7Wsymy8JyorpCCl5V3DEHkinHtbZM1koxa6WqGQer0FpOq8oqZyUAVdA0VGgHAI2UlF1ni8HXBdiYffQtxKMJ4M0PEOKHgdh5u0WjlULHiSh1w7muaO1qByg1COu0rGzvdTt47WP4OmDqzCYc4q5_31AuhKoUobLfYsOWjSGliM3f1ZKYU_ZmyN6csje_2feq8aDyiPinUD1FNWPfx9d--g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455878026</pqid></control><display><type>article</type><title>A Tighter Set-Membership Filter for Some Nonlinear Dynamic Systems</title><source>IEEE Open Access Journals</source><creator>Wang, Zhiguo ; Shen, Xiaojing ; Zhu, Yunmin ; Pan, Jianxin</creator><creatorcontrib>Wang, Zhiguo ; Shen, Xiaojing ; Zhu, Yunmin ; Pan, Jianxin</creatorcontrib><description>In this paper, we propose a tighter set-membership filter for some nonlinear dynamic systems by using an analytic method and a boundary sampling technique. The nonlinear dynamic systems can be linearized about the current estimate, then the remainder term is bounded in real time by an optimization ellipsoid, other than a priori remainder bound. For a 2-D radar system and a quadratic system, some regular properties can be derived for the remainder term, which helps us obtain a tighter bounding ellipsoid to cover the remainder. Moreover, the prediction step and the measurement update step are derived based on the recent optimization method and the on-line bounding ellipsoid of the remainder, so that a tighter set-membership filter can be achieved. The numerical examples demonstrate the effectiveness of the proposed filter.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2018.2830350</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Dynamical systems ; Ellipsoids ; Noise measurement ; Nonlinear dynamic systems ; Nonlinear dynamical systems ; Nonlinear dynamics ; Nonlinear systems ; Optimization ; Radar equipment ; randomization ; Real-time systems ; semi-infinite optimization ; set-membership filter ; Symmetric matrices ; target tracking</subject><ispartof>IEEE access, 2018-01, Vol.6, p.25351-25362</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-654774d3da638d499c36b883cc68b34ac8ecc4277c8dc6aa28aff259daaaf6623</citedby><cites>FETCH-LOGICAL-c408t-654774d3da638d499c36b883cc68b34ac8ecc4277c8dc6aa28aff259daaaf6623</cites><orcidid>0000-0001-9674-700X ; 0000-0003-2604-3597</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8350293$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Wang, Zhiguo</creatorcontrib><creatorcontrib>Shen, Xiaojing</creatorcontrib><creatorcontrib>Zhu, Yunmin</creatorcontrib><creatorcontrib>Pan, Jianxin</creatorcontrib><title>A Tighter Set-Membership Filter for Some Nonlinear Dynamic Systems</title><title>IEEE access</title><addtitle>Access</addtitle><description>In this paper, we propose a tighter set-membership filter for some nonlinear dynamic systems by using an analytic method and a boundary sampling technique. The nonlinear dynamic systems can be linearized about the current estimate, then the remainder term is bounded in real time by an optimization ellipsoid, other than a priori remainder bound. For a 2-D radar system and a quadratic system, some regular properties can be derived for the remainder term, which helps us obtain a tighter bounding ellipsoid to cover the remainder. Moreover, the prediction step and the measurement update step are derived based on the recent optimization method and the on-line bounding ellipsoid of the remainder, so that a tighter set-membership filter can be achieved. The numerical examples demonstrate the effectiveness of the proposed filter.</description><subject>Dynamical systems</subject><subject>Ellipsoids</subject><subject>Noise measurement</subject><subject>Nonlinear dynamic systems</subject><subject>Nonlinear dynamical systems</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear systems</subject><subject>Optimization</subject><subject>Radar equipment</subject><subject>randomization</subject><subject>Real-time systems</subject><subject>semi-infinite optimization</subject><subject>set-membership filter</subject><subject>Symmetric matrices</subject><subject>target tracking</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUMtOwzAQjBBIIOgX9BKJc4rjV-xjKQUqFTi0nK2NvQFXTV3s9NC_JyUIsZddzezMribLxiWZlCXRd9PZbL5aTSgp1YQqRpggZ9kVLaUumGDy_N98mY1S2pC-VA-J6iq7n-Zr__HZYcxX2BUv2NYY06ff549-e0Kb0DOhxfw17LZ-hxDzh-MOWm_z1TF12Kab7KKBbcLRb7_O3h_n69lzsXx7Wsymy8JyorpCCl5V3DEHkinHtbZM1koxa6WqGQer0FpOq8oqZyUAVdA0VGgHAI2UlF1ni8HXBdiYffQtxKMJ4M0PEOKHgdh5u0WjlULHiSh1w7muaO1qByg1COu0rGzvdTt47WP4OmDqzCYc4q5_31AuhKoUobLfYsOWjSGliM3f1ZKYU_ZmyN6csje_2feq8aDyiPinUD1FNWPfx9d--g</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Wang, Zhiguo</creator><creator>Shen, Xiaojing</creator><creator>Zhu, Yunmin</creator><creator>Pan, Jianxin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9674-700X</orcidid><orcidid>https://orcid.org/0000-0003-2604-3597</orcidid></search><sort><creationdate>20180101</creationdate><title>A Tighter Set-Membership Filter for Some Nonlinear Dynamic Systems</title><author>Wang, Zhiguo ; Shen, Xiaojing ; Zhu, Yunmin ; Pan, Jianxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-654774d3da638d499c36b883cc68b34ac8ecc4277c8dc6aa28aff259daaaf6623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Dynamical systems</topic><topic>Ellipsoids</topic><topic>Noise measurement</topic><topic>Nonlinear dynamic systems</topic><topic>Nonlinear dynamical systems</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear systems</topic><topic>Optimization</topic><topic>Radar equipment</topic><topic>randomization</topic><topic>Real-time systems</topic><topic>semi-infinite optimization</topic><topic>set-membership filter</topic><topic>Symmetric matrices</topic><topic>target tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhiguo</creatorcontrib><creatorcontrib>Shen, Xiaojing</creatorcontrib><creatorcontrib>Zhu, Yunmin</creatorcontrib><creatorcontrib>Pan, Jianxin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhiguo</au><au>Shen, Xiaojing</au><au>Zhu, Yunmin</au><au>Pan, Jianxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Tighter Set-Membership Filter for Some Nonlinear Dynamic Systems</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2018-01-01</date><risdate>2018</risdate><volume>6</volume><spage>25351</spage><epage>25362</epage><pages>25351-25362</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In this paper, we propose a tighter set-membership filter for some nonlinear dynamic systems by using an analytic method and a boundary sampling technique. The nonlinear dynamic systems can be linearized about the current estimate, then the remainder term is bounded in real time by an optimization ellipsoid, other than a priori remainder bound. For a 2-D radar system and a quadratic system, some regular properties can be derived for the remainder term, which helps us obtain a tighter bounding ellipsoid to cover the remainder. Moreover, the prediction step and the measurement update step are derived based on the recent optimization method and the on-line bounding ellipsoid of the remainder, so that a tighter set-membership filter can be achieved. The numerical examples demonstrate the effectiveness of the proposed filter.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2018.2830350</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9674-700X</orcidid><orcidid>https://orcid.org/0000-0003-2604-3597</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2018-01, Vol.6, p.25351-25362
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2455878026
source IEEE Open Access Journals
subjects Dynamical systems
Ellipsoids
Noise measurement
Nonlinear dynamic systems
Nonlinear dynamical systems
Nonlinear dynamics
Nonlinear systems
Optimization
Radar equipment
randomization
Real-time systems
semi-infinite optimization
set-membership filter
Symmetric matrices
target tracking
title A Tighter Set-Membership Filter for Some Nonlinear Dynamic Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T07%3A24%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Tighter%20Set-Membership%20Filter%20for%20Some%20Nonlinear%20Dynamic%20Systems&rft.jtitle=IEEE%20access&rft.au=Wang,%20Zhiguo&rft.date=2018-01-01&rft.volume=6&rft.spage=25351&rft.epage=25362&rft.pages=25351-25362&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2018.2830350&rft_dat=%3Cproquest_cross%3E2455878026%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-654774d3da638d499c36b883cc68b34ac8ecc4277c8dc6aa28aff259daaaf6623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455878026&rft_id=info:pmid/&rft_ieee_id=8350293&rfr_iscdi=true