Loading…
Topology-Aware Space-Time Network Coding in Cellular Networks
Space-time network coding (STNC) is a time-division multiple access (TDMA)-based scheme that combines network coding and space-time coding by allowing relay nodes to combine the information received from different source nodes during the transmission phase and to forward the combined signal to a des...
Saved in:
Published in: | IEEE access 2018-01, Vol.6, p.7565-7578 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Space-time network coding (STNC) is a time-division multiple access (TDMA)-based scheme that combines network coding and space-time coding by allowing relay nodes to combine the information received from different source nodes during the transmission phase and to forward the combined signal to a destination node in the relaying phase. However, STNC schemes require all the relay nodes to overhear the signals transmitted from all the source nodes in the network. They also require a large number of time-slots to achieve full diversity in a multipoint-to-multipoint transmission. Both conditions are particularly challenging for large cellular networks where, assuming a downlink transmission, base stations (BSs) and users only overhear a subset of all the BSs. In this paper, we exploit basic knowledge of the network topology in order to reduce the number of time-slots by allowing simultaneous transmissions from those BSs that do not overhear each other. Our results show that these topology-aware schemes are able to increase the spectral efficiency per time-slot and bit error rate with unequal transmit power and channel conditions. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2017.2773709 |