Loading…
A Multi-Objective Robust State Estimator for Systems Measured by Phasor Measurement Units
Conventional state estimators, such as the weighted least squares estimator, have been widely employed for state estimation in power systems. However, these methods have difficulty addressing the leverage effect and rejecting erroneous measurements simultaneously. In light of these factors, this pap...
Saved in:
Published in: | IEEE access 2018-01, Vol.6, p.14620-14628 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Conventional state estimators, such as the weighted least squares estimator, have been widely employed for state estimation in power systems. However, these methods have difficulty addressing the leverage effect and rejecting erroneous measurements simultaneously. In light of these factors, this paper proposes a multi-objective robust state estimator for systems measured by phasor measurement units (PMUs) to eliminate the leverage effect and reject erroneous measurements automatically. To reduce the computational complexity, the multi-objective state estimation is solved by the normal boundary intersection method, and is then transformed into a series of single-objective linear optimization problems. Numerical simulations based on the IEEE 14-bus system and an actual provincial 760-bus system monitored by PMUs are conducted to verify the effectiveness and robustness of the proposed estimator compared with two other estimators. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2018.2790984 |